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ABSTRACT

This paper describes the development of U-net++ models, a type of neural network that performs
deep learning, to emulate the shortwave Rapid Radiative-transfer Model (RRTM). The goal is
to emulate the RRTM accurately in a small fraction of the computing time, creating a U-net++
that could be used as a parameterization in numerical weather prediction (NWP). Target vari-

ables are surface downwelling flux, top-of-atmosphere upwelling flux ( ), net flux, and a

qu;yOA
profile of radiative-heating rates. We have devised several ways to make the U-net++ models
knowledge-guided, recently identified as a key priority in machine learning (ML) applications
to the geosciences. We conduct two experiments to find the best U-net++ configurations. In
Experiment 1, we train on non-tropical sites and test on tropical sites, to assess extreme spatial
generalization. In Experiment 2, we train on sites from all regions and test on different sites from all
regions, with the goal of creating the best possible model for use in NWP. The selected model from
Experiment 1 shows impressive skill on the tropical testing sites, except four notable deficiencies:
large bias and error for heating rate in the upper stratosphere, unreliable FS;JOA for profiles with
single-layer liquid cloud, large heating-rate bias in the mid-troposphere for profiles with multi-layer
liquid cloud, and negative bias at low zenith angles for all flux components and tropospheric heating

rates. The selected model from Experiment 2 corrects all but the first deficiency, and both models

run ~10% times faster than the RRTM. Our code is available publicly.
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1. Introduction

Radiation is a key component of the global energy budget. In the shortwave part of the spectrum
(mostly solar radiation, with wavelengths < 4 um), incoming radiation is much greater in the
tropics than at the poles. This imbalance, which is due to Earth-Sun geometry, sets up a meridional
gradient in absorbed shortwave radiation that drives the global circulation (Sections 4.6 and 10.1.1
of Wallace and Hobbs 2006). Surface albedo has a secondary effect on absorbed shortwave
radiation: at high latitudes the surface is often covered by snow and ice, which increases albedo
and causes less shortwave radiation to be absorbed. This enhances the meridional gradient in
absorbed shortwave radiation. In the longwave part of the spectrum (mostly terrestrial radiation,
with wavelengths 2 4 pm), there is also an albedo effect: areas with high albedo, typically at high
latitude, are colder and emit less longwave radiation. In terms of net radiation (absorbed shortwave
minus emitted longwave), the two albedo effects approximately cancel out. Thus, in a globally and
annually averaged sense, the meridional distribution of net radiation is similar to that of absorbed
shortwave radiation. (Stone 1978)

When radiation propagates through the atmosphere, heating (cooling) occurs in areas of radiative-
flux convergence (divergence). Most radiative-transfer models (RTM) assume horizontal indepen-
dence, i.e., that radiation is transferred only in the vertical dimension. In this case, radiative transfer

is governed by the following equation:

g_gAFnet
dt ¢, Ap '’

(D

where g is the gravitational constant (~9.81 m s72); cp 1s the specific heat of dry air (1004 J kg'!
K™); Ap is the thickness of a layer in pressure coordinates (Pa); AFer = AFjoum — AF,, is the
net flux into the layer (W m2); and Cf% is the resulting heating rate (K s'1). Radiative transfer

is extremely important in numerical weather prediction (NWP) and climate models. However,
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because radiative transfer is a subgrid-scale process, it must be parameterized — i.e., estimated
outside the dynamical core by a separate RTM, rather than explicitly resolved.

Radiative transfer is inherently complex, due to the spectral (wavelength-dependent) nature of
gaseous absorption, as well as changes in the refractive index and shape of particles acting to
scatter and absorb radiation. The most accurate RTMs are line-by-line models, which explicitly
simulate gaseous absorption in each spectral band (Turner et al. 2004; Mlawer and Turner 2016).
However, the radiative properties of clouds and aerosols are much smoother in spectral space
than those of gaseous molecules. Thus, simpler scattering models can be used for clouds and
aerosols (e.g., Stamnes et al. 1988). Nonetheless, both line-by-line and scattering models are
extremely computationally expensive, so cannot be used as parameterizations in NWP. There is
an inherent trade-off between computational cost and accuracy, and the goal is typically to reduce
computational cost by orders of magnitude without a large reduction in accuracy.

Perhaps the most common approach is correlated-k models, like the Rapid Radiative-transfer
Model (RRTM; Mlawer et al. 1997), which emulates line-by-line models but i1s many orders of
magnitude faster. When implemented as a parameterization, an RTM must provide three variables
to the parent NWP model for both the shortwave and longwave spectra: a vertical profile of
radiative-heating rates, surface downwelling flux (F sfe ), and top-of-atmosphere upwelling flux

down

(FE;JOA). For the RRTM, F;ijn and FS;,OA are accurate within ~1 W m™, while heating rates
are accurate within ~0.1 K day'1 (Iacono et al. 2008). The longwave RRTM has been used in
NWP since the early 2000s (Iacono et al. 2000), and the shortwave RRTM since the mid-2000s
(Tacono et al. 2005). Although the RRTM is much faster than line-by-line models, it is still too
slow for operational NWP. The RRTMG (RRTM for global climate models; Pincus and Stevens

2013) makes additional simplifications and is approximately twice as fast as the RRTM, but it is

still too slow to call at every atmospheric time step in NWP. Thus, while other parameterizations
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(microphysics, boundary layer, etc.) are called at every time step, the RRTMG is called less often,
which makes the NWP model less accurate. Also, even when called less often, the RRTMG still
accounts for ~50% of the computation of the overall NWP model (Krasnopolsky 2020).

Due to these issues, some groups have used neural networks (Part II of Goodfellow et al.
2016), a type of machine learning (ML), to emulate RTMs (Krasnopolsky 2020 and references
therein). Neural networks are also popular for emulating other atmospheric processes, especially
subgrid-scale convection in NWP models (Gentine et al. 2018; Brenowitz and Bretherton 2018;
Brenowitz et al. 2020; Krasnopolsky 2020; Beucler et al. 2021). Because neural networks can
theoretically approximate a function of arbitrary complexity, they are often called “universal
function-approximators”. Although neural networks are often slow to train, at inference time
(when applying a trained neural network to new data), they are much faster than process-based
RTMs, even the RRTMG. Neural networks often contain many layers with many weights in each
layer, allowing them to represent important features at various levels of abstraction, which they
ultimately transform into predictions. However, each weight is one degree of freedom and neural
networks often contain millions of weights, which makes them prone to overfitting. Also, ML is
typically poor at extrapolating to conditions outside those seen in the training data. This diminishes
the trustworthiness of ML, which is a key requirement for transitioning ML to operational products
such as NWP (Gil et al. 2019).

We have developed neural networks to emulate shortwave radiative transfer, with three main
characteristics that make our work unique. First, we use U-net++ models (Zhou et al. 2019), as
opposed to the fully connected networks (sometimes called “dense” or “feed-forward”; see Chapter
6 of Goodfellow et al. 2016) used in previous work. U-net++ models are a type of deep learning,
which can exploit spatial patterns in gridded data to make better predictions. Second, we have built

physical constraints and vertical non-locality into the U-net++ models, allowing them to handle
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non-adjacent cloud layers and better extrapolate to different conditions (e.g., from non-tropical to
tropical sites). Third, we train U-net++ models to emulate the RRTM, instead of the less accurate
RRTMG used in previous work (Krasnopolsky et al. 2010; Krasnopolsky 2020). Although line-
by-line models are the most accurate, they are only slightly more accurate than the RRTM (Iacono
et al. 2008) and many orders of magnitude slower, so emulating line-by-line models would vastly
increase the time required to create training data for the U-net++ models.

The rest of this paper is organized as follows. Section 2 describes the inner workings of a
U-net++; Section 3 describes the input data and methods used to train the U-net++ models; Section
4 describes experiments to find the best U-net++ configuration (hyperparameters); Sections 5 and

6 evaluate and interpret the selected U-net++ models; and Section 7 concludes.

2. Background on U-net++

This section focuses mainly on traditional U-nets, extending the discussion to U-net++ at the
end. We use the Keras library for Python (Chollet et al. 2020) to implement all U-net++ models,
and our code is freely available on the internet (see data-availability statement).

U-nets are a specialized type of convolutional neural network (CNN; Fukushima 1980;
Fukushima and Miyake 1982). CNNs are a deep-learning method (Section 1.1.4 of Chollet 2018)
designed to exploit spatial patterns in gridded data, which they achieve via convolution and pooling,
spatial operations defined later in this section. CNNs have become popular tools in atmospheric
science (Wang et al. 2016; Racah et al. 2017; Kurth et al. 2018; Bolton and Zanna 2019; Gagne
et al. 2019; McGovern et al. 2019; Wimmers et al. 2019; Lagerquist et al. 2019; Ebert-Uphoff and

Hilburn 2020; Lagerquist et al. 2020a,b). U-nets (Ronneberger et al. 2015) retain all the advantages
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of CNNs but are designed for pixelwise prediction! — i.e., to make a prediction at every grid point.
CNNss are typically used for full-image prediction — i.e., to make one prediction based on the full
grid. There are several U-net applications to atmospheric science in the refereed literature (Chen
et al. 2020; Kumler-Bonfanti et al. 2020; Sadeghi et al. 2020; Sha et al. 2020a,b), and we are aware
of several other atmospheric scientists currently adopting U-nets (Stewart et al. 2020; Berthomier
and Pradel 2021; Felt et al. 2021; Hayatbini et al. 2021).

As shown in Figure 1, a U-net contains four types of specialized components: convolutional
layers, pooling (downsampling) layers, upsampling layers, and skip connections. The left side of
the U-shape is the downsampling side, where spatial resolution decreases with depth, and the right
side is the upsampling side, where resolution increases with depth. The convolutional layers detect
spatial features, and the other components allow convolutional layers to detect features at various
spatial resolutions, which is important due to the multi-scale nature of atmospheric phenomena.
Inputs to the first convolutional layer (top-left green box in Figure 1) consist of raw predictors
(here, physical variables like temperature and pressure), while inputs to all other layers consist
of feature maps, which are transformed versions of the raw predictors. As the spatial resolution
decreases, the number of feature maps (“‘channels”) typically increases, to offset the loss of spatial
information. Convolution is both a spatial and multivariate transformation, so the feature maps
encode spatial patterns that include all predictor variables. Most CNN applications involve data
with two spatial dimensions (2-D), for which the inner workings of a convolutional layer are
illustrated in Supplemental Figure S1 of Lagerquist et al. (2020b). For 1-D data like those used in
the current work, see our Supplemental Figure S1 (an animation). In general, a convolutional layer

is followed by an activation function and possibly batch normalization (Supplemental Table S2).

1U-nets are not the only type of CNN designed for pixelwise prediction. Other examples, in the encoder-decoder family along with U-nets,

include convolutional auto-encoders (Chen et al. 2017) and fully convolutional networks (Long et al. 2015).

7
Accepted for publication in Journal of Atiiospheric-anti°Oeeanic Technidlogy DOF10. PI75RJITECHD21-0007.1.



Each pooling layer downsamples the feature maps to a lower resolution (larger grid spacing),
using either a maximum or mean filter. On the downsampling side of the U-net (left side in Figure
1), feature maps at deeper layers contain higher-level abstractions, because they contain information
from a wider variety of spatial scales and have passed through more convolutions. For 2-D data,
the inner workings of a pooling layer are illustrated in Supplemental Figure S2 of Lagerquist et al.
(2020b). For 1-D data, see our Supplemental Figure S2 (an animation).

Each upsampling layer upsamples the feature maps to a higher resolution, using an interpolation
method such as nearest-neighbour or linear. In this work we use nearest-neighbour. However,
the choice of interpolation method is unimportant: upsampling always consists of interpolation
followed by convolution, because interpolation cannot adequately reconstruct high-resolution in-
formation from low-resolution information. On the upsampling side of the U-net (right side of
Figure 1), while spatial resolution increases the number of channels decreases, terminating in the
number of output channels. In this work there is one output channel (radiative-heating rate, as
discussed in Section 3). For 1-D data, the inner workings of an upsampling layer are shown in
Supplemental Figure S3 (an animation).

Skip connections preserve high-resolution information from the downsampling side of the U-net
and carry it to the upsampling side, as shown in Figure 1. Without skip connections, the U-net
would simply perform downsampling followed by upsampling, which is a lossy operation. In other
words, upsampling cannot fully recover the high-resolution information lost during downsampling.
On the upsampling side of the U-net, at each spatial resolution r (each row in Figure 1), some
feature maps are provided by the upsampling layer at the next-coarsest resolution (the row below in
Figure 1), while some are provided by a skip connection. The advantage of feature maps from the
upsampling layer is that they contain higher-level abstractions, because they include information

from more spatial scales and more convolutions. The advantage of feature maps from the skip
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connection is that they are truly at resolution 7, not merely upsampled to . In other words, for the
skip connection the nominal and effective resolutions are both r, whereas for the upsampling layer
the effective resolution is coarser than r. Feature maps from the skip connection and upsampling
layer are both passed through a convolutional layer, which combines information from both (“the
best of both worlds™).

Fully connected layers (sometimes called “dense”; see Chapter 6 of Goodfellow et al. 2016)
are designed for full-image prediction, so they are not typically included in a U-net. However,
we include fully connected layers in our U-nets, because the task is a combination of pixelwise
prediction (a vertical profile of radiative-heating rates) and full-image prediction (scalar fluxes).
See Section 3 for more on the output variables. Since fully connected layers are spatially agnostic,
feature maps are flattened into a vector before they are passed to the fully connected layers (in
Figure 1 this is a vector of length 4 x 1024 = 4096). Each feature in one fully connected layer is a
weighted sum of those in the previous layer. Like convolutional layers, each fully connected layer
is followed by an activation function and possibly batch normalization.

Figure 1 shows a U-net with the traditional architecture (Ronneberger et al. 2015), but we have
adopted the U-net++ architecture (Zhou et al. 2019), shown in Figure 2. The U-net++ architecture
contains more skip connections, allowing features from more than two scales to be combined at
each level. For example, the set of feature maps labeled “D” in Figure 2 is produced by combining
A, B, and the upsampled version of C. Although these feature maps all have a nominal resolution
of 18h (18 heights in the profile, or ~ % the resolution of the predictors), their effective resolutions,
due to upsampling, are respectively 18h, Sh, and 4h. This ability to combine information from
many scales at once can allow the U-net++ to make better predictions than the U-net (Zhou et al.

2019).
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Before training, all weights (in the convolutional, fully connected, and batch-normalization
layers) are initialized to random values; during training, they are adjusted to minimize the loss

function. Our particular loss function is discussed in Section 3c2.

3. Data and Methods

a. Data Description

Like the RRTM, our U-net++ models assume horizontal independence and thus treat each vertical
column separately. To create inputs (predictors) for the RRTM and U-net++ models, we use data
from the Rapid Refresh model (RAP; Benjamin et al. 2016). The RAP is a non-hydrostatic,
mesoscale, operational NWP model, run every hour with 13-km horizontal grid spacing and 51
vertical levels. We have obtained RAP data from an internal NOAA archive in height coordinates,
running from 10 to 50 000 metres above ground level (m AGL), with 20-m vertical spacing near
the surface and 4000-m vertical spacing near the top. We extract O-hour analyses of 14 variables
(Table 1 and Figure 3) from 30 sites throughout the northern hemisphere (Figure 4), at every hour
in the years 2017-2020. We are currently emulating a simplified version of the RRTM, which
assumes a climatological profile of trace gases (O3, CO,, CHy, etc.) and does not consider aerosols
or precipitation (see future work in Section 7), which is why the predictors do not include this
information. Other than trace gases, aerosols, and precipitation, the main controls on radiative
transfer are the solar zenith angle, albedo, profiles of atmospheric state variables (temperature and
pressure), and profiles of the three water species. This explains our choice of predictors (Table 1).

To create desired outputs (“targets” or “labels” in the ML literature), we run the RRTM separately

for each example, where one “example” is one profile at one time. The output variables are those
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required by an NWP model from a shortwave RTM, namely the heating-rate profile and the two

flux components: F joflin and 194, See Figure 3d.

b. Pre-processing

Before training U-net++ models, we pre-process the data in two ways. First, we split the data
into training, validation, and testing sets. We split the data differently for the two experiments
(Section 4), as shown in Table 2. For each experiment, the datasets are mutually independent —
i.e., any pair of datasets contains different years and/or different sites. Also, there is a one-week
gap between each pair of consecutive datasets, to eliminate temporal autocorrelation. Second, we
normalize predictor and target variables, using the methods listed in Table 3. The procedure is
described below for each scalar predictor? x; only step 1 is applied to the target variables. Note that
only the U-net++-training data (Table 2) are used for scaling, i.e., to compute percentiles in step 1.
This ensures that no information from the isotonic-regression-training, validation, or testing set is

used to train the U-net++. If it were, the four datasets would no longer be independent.

1. Uniformization. Transform z to a uniform distribution over [0, 1], by converting each value to

its percentile over all z-values in the U-net++-training set. Let the transformed variable be .

2. z-score normalization. Transform 2’ to a standard Gaussian distribution (with mean of 0.0

and variance of 1.0), using the inverse of the cumulative density function (CDF).

The purpose of normalizing predictors is to ensure that they have equal variance, which prevents
the U-net++ models from unduly focusing on predictors with higher variance due to physical
units. For example, in our dataset, specific humidity has a variance of 2.4 x 107 kg> kg2,
while temperature has a variance of 672.1 K?. z-score normalization is common practice for

neural networks (Section 3.6.2 of Chollet 2018; Shanker et al. 1996), but the standard approach

2A scalar predictor may be zenith angle, albedo, or one vector predictor at one height.
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is to divide each variable by its standard deviation in the raw data. We use a different approach
(uniformization followed by the inverse CDF) because the standard approach assumes that the raw
data follow a Gaussian distribution, which is untrue for our predictors.

The purpose of normalizing target variables is similar: to ensure that they have equal ranges,
so that one target variable cannot dominate the loss function. For example, in our dataset, Fg;jOA
ranges from 0-993.3 W m2 with a median of 118.7 W m2, while pefe ranges from 0-1198.9

down

W m with a median of 322.1 W m™. Without normalization, errors for stﬁn would generally

be larger, causing Fj(ﬁn to have a greater influence on the loss function. Unlike the predictors,
we apply only uniformization, not z-score normalization, to the target variables. Normalizing to
a distribution without negative values allows us to use the rectified linear unit, which prohibits
negative values, as the activation function for the output layers (Supplemental Table S2).

Note that we normalize only two target variables: Fg;,OA and F3/° . We do not normalize

down*

heating rate, for reasons discussed in Section 3c2.

c. Knowledge-guided Machine Learning

We have devised three ways to make the U-net++ models knowledge-guided — i.e., to include
physical relationships in the training — which is a key priority in ML applications to the geosciences

(Reichstein et al. 2019; Gil et al. 2019).

1) PHYSICALLY CONSISTENT AND SKILLFUL NET FLUX

The U-net++ models predict three flux components, but they predict only Fj;ifm and Fg;,OA

independently, with the net flux (£/,¢;) predictions constrained by the following law:

Fpet = F3J¢ — FIO4, )

down
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Fet 1s included in an output neuron (in the last fully connected layer, at the bottom of Figure
2) and is therefore included in the loss function. Equation 2 could have been easily satisfied by
post-processing (i.e., computing F,.; outside the U-net++ models), but this would leave F},.; out
of the loss function. As discussed in Section 5b, the post-processing approach allowed the models
to make poor predictions of F,¢;, while our approach forces predictions of all flux components to

be both physically consistent and skillful.

2) CUSTOM LOSS FUNCTION TO EMPHASIZE LARGE HEATING RATES

We use a custom loss function:

M
ZZ max(rij, Fij)[rij — Fij]” +a—ZZ i — Fi)%, 3)

le].

where N is the number of examples; H = 73 is the number of heights per example; 7;; is the actual
heating rate for the j height in the ™ example; 7;; 18 the corresponding prediction; M = 3 is the
number of flux components; Fj;, is the actual value of the ™ flux component in the i™ example;
and Fj, is the corresponding prediction. « is a coefficient that will be discussed later.

The first term in Equation 3 is the dual-weighted mean squared error (MSE) for heating rates,
and the second term is the MSE for fluxes. Using the dual-weighted MSE for heating rates, rather
than the standard MSE, weights points with a large predicted or actual heating rate more heavily.
In early experiments (not shown), we found that this is necessary to skillfully predict large heating
rates. Large heating rates are important in many atmospheric regimes, including stratocumulus
clouds and the upper stratosphere. Shortwave radiation is absorbed by liquid water at the top of
a stratocumulus cloud, leading to diabatic heating and a turbulent circulation that maintains the
cloud; this is why stratocumulus clouds tend to be long-lived (Morrison et al. 2012; Wood 2012).
In the upper stratosphere, shortwave radiation is absorbed by ozone, leading to extreme diabatic

heating (Iacono et al. 2008); this is why the temperature profile of the stratosphere increases with
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height. However, large heating rates in the troposphere are rare (Figure 5d), making them difficult
to predict unless they are emphasized with a custom loss function such as dual-weighted MSE.
The flux components follow less skewed distributions (Figure 5a-c), so no custom loss function is
needed to make the U-net++ models skillfully predict extreme fluxes.

The U-net++ models predict heating rates in raw physical units (K day™!), and values in our dataset
range from 0-42 K day™!, so the weight ranges from approximately 0-42. Meanwhile, the U-net++
models predict flux components in normalized units, ranging from 0-1. In early experiments
(not shown), we tried balancing the two terms by setting o > 1 in Equation 3. However, we
found that regardless of «, training is effectively partitioned into two phases. During early training,
heating-rate predictions improve rapidly while flux predictions improve slowly; during late training,
heating-rate predictions improve slowly while flux predictions improve rapidly. In other words,
the U-net++ models learn to predict heating rates well, then learn to predict fluxes well. Thus, for

models shown in the paper, we use o = 1.

3) CUSTOM PREDICTORS TO ACCOUNT FOR NON-LOCAL EFFECTS

Our choice of predictors allows the U-net++ models to consider vertically non-local effects, which
occur when the heating rate at height z is affected by predictors far away from z. Specifically, we
include height-integrated paths of the three water species: downward and upward LWP, IWP, and
WYVP (Table 1). The raw RAP data include only concentrations of the three water species: LWC,
IWC, and humidity. Height-integrated paths are crucial in many scenarios — e.g., to predict the
heating-rate profile in a column with multi-layer liquid cloud, like that shown in Figure 3. The
top cloud layer attenuates a lot of downwelling solar radiation, leading to large heating rates in the
top cloud layer (around 5.5 km AGL in Figure 3; the cloud layer itself is shown in panel b, and

the resulting radiative heating is shown in panel d). However, lower cloud layers do not produce
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large heating rates, because at lower heights most downwelling solar radiation has already been
attenuated by the top cloud layer (e.g., Turner et al. 2018). This is exemplified in Figure 3 for
the lower cloud layer, stretching from 0-2.4 km AGL. When trained with only concentrations and
not paths, the U-net++ models cannot represent these relationships, which are typically vertically

non-local because the cloud layers are far apart (more than a few grid cells from each other).

d. Isotonic Regression for Bias Correction

We bias-correct predictions from each U-net++ with isotonic regression (Barlow and Brunk
1972), which is an ML method commonly used to bias-correct other ML methods. The ML
method being corrected is called the “base model”. For each target variable y, isotonic regression

creates a mapping of the following form:

Yi — U, 4)

where y; is the i cutoff point for base-model predictions and Y/ is the bias-corrected value. For y-
values that fall between two cutoff points, isotonic regression uses linear regression. For example,
if a base-model prediction falls halfway between y; and y;,, the bias-corrected prediction will fall
halfway between y;- and y,.. During training, the mapping is adjusted to minimize mean squared
error (MSE), subject to the isotonic constraint: if yj > y;, then y) > y;-. In other words, isotonic
regression cannot change the rank order of predictions.

Because isotonic regression is a univariate method (with one input variable and one output
variable), we apply isotonic regression separately to heating rate at each height, F j g;m, and Fg;,OA.
We do not apply isotonic regression to Fje¢, SO [ predictions from isotonic regression are

computed outside the model, via Equation 2. Thus, unlike for the U-net++ models, F,.; is not

included in the loss function for isotonic regression (which is MSE). However, we have found
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that F),.; predictions are still better with isotonic regression than without. In other words, bias-

correcting F); ({jm

and Fg;,OA bias-corrects Fj,q; as a side effect.
We use separate training data (sites and times) for U-net++ and isotonic regression, as shown
in Table 2. If we used the same training data, isotonic regression would learn to bias-correct the

U-net++ models only for data that they have already “seen,” for which the U-net++ predictions are

unrepresentatively good.

4. Hyperparameter Experiments

A hyperparameter is a property of an ML model that, unlike the weights (sometimes called
“parameters”), cannot be adjusted by training. We conduct two experiments to find the best U-
net++ hyperparameters for emulating the shortwave RRTM. In Experiment 1, we train ML models
(U-net++ and isotonic regression) with data from non-tropical sites in 2018-2020, then test with
data from tropical sites in 2017 (Table 2). This tests the ability of the ML models to generalize in
both space and time. It is crucial that we test the ability to generalize in space, because although 30
sites are used for model development? (Figure 4), an ML-based parameterization would be applied
to every site (horizontal grid location) in the NWP model. Also, extreme differences between
the training and application data might be seen in other scenarios, such as climate change (if an
ML model remains in production for long enough, it may be applied to a different climate than
in the training data) and rare events (the application data may contain a weather pattern not found
in the training data). In Experiment 2, we train ML models with data from “Assorted]” sites in

2018-2020, then test with data from “Assorted2” sites in 2017 (Table 2). The difference here is

3We have obtained RAP data from only 30 sites, because (a) the native RAP-output files are large and stored on a tape archive, which makes
processing computationally slow; (b) the 30 sites chosen are important for other NOAA projects, so the data will be reused; (c) extracting millions
of examples from 30 sites yields a large sample size at each site, as opposed to extracting millions of examples from thousands of sites. This allows
us to robustly test the models’ generalization ability to each site in the testing data.
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that both the Assortedl and Assorted? sites include all three regions: Arctic, mid-latitude, and
tropical. Thus, although to some extent the testing data for Experiment 2 test the models’ ability
to generalize in space (to different sites), this test is less stringent than in Experiment 1 (to a
completely different region). The goal of Experiment 2 is to create the best possible ML model for
use as a parameterization in NWP. We hypothesize that a model trained with data from all three
regions will perform better than one trained with only non-tropical data.

In both experiments we perform a grid search (Section 11.4.3 of Goodfellow et al. 2016)
to optimize hyperparameters. A grid search involves four steps: (1) define the experimental
hyperparameters and values to be attempted for each, (2) train a model with every possible
combination of values, (3) evaluate all models on the validation data, (4) select the model that
performs best on validation data and evaluate it on testing data. We choose three experimental
hyperparameters and attempt the values listed in Table 4: the number of fully connected layers,
dropout rate for fully connected layers, and L, weight for convolutional layers. The number of
fully connected layers (dashed black arrows in Figure 2) controls the complexity of features used
to predict flux components, with more layers allowing for higher complexity. Although higher
complexity would ideally improve predictions, the number of weights increases dramatically with
the number of fully connected layers, which can lead to overfitting. Meanwhile, dropout (Hinton
et al. 2012) and L, are both regularization methods; regularization encourages a simpler model,
which reduces overfitting. The amount of regularization increases with both the dropout rate and
L, weight (see Section 4b of Lagerquist et al. 2020b for details).

U-net++ models have many hyperparameters, and it is impossible to experiment with them all,
due to combinatorial explosion. For example, at a conservative estimate of 20 hyperparameters, if
we attempted 5 values for each, we would need to train 52 = 9.5 x 10!3 U-net++ models. Training

one U-net++ takes approximately 192 core-hours on graphics-processing units (GPU) and 480 core-
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hours on central processing units (CPU), so training more than a few hundred to a few thousand
U-net++ models is infeasible. Some important fixed (non-experimental) hyperparameters are listed
in Supplemental Tables S1-S2, along with the value chosen for each and a justification. This leaves

the three experimental hyperparameters listed in Table 4.

5. Model Evaluation

a. Evaluation Methods

For both Experiments 1 and 2, we evaluate the selected model overall (on the whole testing set)
and in three regime-based settings. First, we evaluate the model by cloud regime: on profiles
with no liquid cloud, single-layer liquid cloud, and multi-layer liquid cloud. For this purpose, a
cloud layer is defined as a contiguous set of heights with LWC > 0 g m™ and total LWP > 25 g
m2. Clouds add immense complexity to radiative transfer, because they both absorb and scatter
radiation, creating a discontinuity in the profile of extinction optical depth. Thus, a model that
performs well in cloud-free situations, is not guaranteed to perform well in cloudy situations. Also,
radiative heating is a key process in the maintenance of stratocumulus clouds, which makes it key
for climate prediction. Second, we evaluate the model by solar zenith angle. The zenith angle
determines the amount of incoming top-of-atmosphere solar radiation, as well as its incidence
angle, which determines the amount of atmosphere through which radiation must pass en route to
the surface. A model that performs well for intermediate zenith angles, may not perform well when
the Sun is directly overhead (zenith angle of 0°) or on the horizon (90°). Third, we evaluate the
model by site. Different sites around the globe have different properties not accounted for in the
partitioning by cloud regime and zenith angle, such as temperature, albedo, and cloud type (e.g.,

stratocumulus clouds are very common in the Arctic).
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We make abundant use of the reliability curve and attributes diagram. Although both graphics
were initially developed for classification (i.e., to evaluate probabilistic predictions of an event),
we have adapted them for regression (i.e., to evaluate real-valued predictions). For classification,
the reliability curve plots predicted probability vs. conditional event frequency and answers the
question: “For a given probability, what is the expected event frequency?” For regression, the
reliability curve plots the predicted value vs. conditional mean observed value and answers the
question: “For a given prediction, what is the expected observation?” For both classification
and regression, a perfect reliability curve follows the x = y line (diagonal grey line in Figure 6a).
Meanwhile, the attributes diagram (Hsu and Murphy 1986) is a reliability curve with extra reference
lines: the no-resolution line (horizontal grey in Figure 6a), climatology line (vertical grey in Figure
6a), and positive-skill area (blue shading in Figure 6a). For classification, the no-resolution and
climatology lines both correspond to the event frequency in the dataset; for regression, these lines
correspond to the mean observation (in Figure 6a, mean Fjifm) in the dataset. For a model
with no resolution, the reliability curve follows the no-resolution line — i.e., the conditional mean
observation is the same for every prediction. For a climatological model (one that always predicts
the mean value), the reliability curve consists of one point, at the intersection of the no-resolution
and climatology lines. Where the reliability curve passes through the positive-skill area, the model
has a lower MSE (for classification, MSE is called the Brier score) than a climatological model.
Lastly, the inset histograms show the distribution for both the predictions and observations. In
a perfect attributes diagram, the reliability curve is perfect (follows the x = y line) and the two
histograms are identical.

Both the reliability curve and attributes diagram are useful for diagnosing conditional bias. For
example, if a model has positive bias for low predictions and negative bias for high predictions,

these biases may offset, making overall bias (on the whole testing set) negligible. Thus, using the
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reliability curve and attributes diagram fits our motif of conducting regime-based evaluation, since
averaging over the whole testing set may obscure issues that occur in certain regimes. For the scalar
target variables (flux components), we plot one attributes diagram for each (e.g., Figures 6a-c). For
the vector target variable (heating rate), we plot one reliability curve for each height (e.g., Figures
6g-1), omitting the reference lines in the attributes diagram. The reference lines would be different

for each of the 73 heights, and it is not feasible to show 73 sets of reference lines.

b. Experiment 1

Results of the hyperparameter experiment, used to select the preferred model, are relegated to
the Supplemental Material. The main conclusion to note here is that the U-net++ performs best
when the dropout rate and L, weight are small (less regularization), which suggests that overfitting
is not a serious problem for emulating the shortwave RRTM. This is surprising, as our experience
with ML for atmospheric science indicates that overfitting is a serious problem and aggressive
regularization is needed (e.g., Lagerquist et al. 2019, 2020b). We suspect that overfitting is less
problematic for our task because it is a perfect-model experiment, where the ML model is trained
to emulate another model (the shortwave RRTM), rather than to fit real-world observations, which
have more noise and uncertainty. Ultimately, we select the model with 3 fully connected layers,
a dropout rate of 0.1, and L, weight of 106>, Results shown in the rest of this section, for the
selected model only, are based on testing data rather than validation data.

Figure 6 shows the model’s performance on the whole testing set (tropical sites in 2017). The

mean absolute error (MAE) skill score is defined as MAECI'\";I“X;;/IAEM“"“, where MAE_|imo 1S the
climo

MAE that would result from always predicting the climatological mean, estimated here as the
mean over the U-net++-training data. The definition of MSE skill score is analogous. Both skill

scores range from (—oo, 1]; the optimal value is 1; and values > 0 signal an improvement over
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climatology. Figures 6a-c show the attributes diagram for each flux component; the reliability
curves are nearly perfect, and as shown by the inset histograms, the predictions and observations
are similarly distributed. Figure 6d shows the bias profile for heating rates; nearly all heights have
an absolute bias < 0.1 K day™!, which is considered a threshold for stable integration into NWP
(Iacono et al. 2008). Figure 6e shows the MAE profile for heating rates, which has a similar shape
but with slightly larger values, because MAE includes both systematic error (bias) and random
error. Both absolute bias and MAE are largest in the upper stratosphere, specifically at 46 km.
This is the height with the largest climatological mean (32.2 K day™! in the U-net++-training data),
due to absorption of solar radiation by ozone. Thus, both the actual and climatological models
have a large MAE at 46 km, leading to only a small dip in the MAE skill score (Figure 6f). Figure
6g shows the reliability curve for heating rate at each height; all curves nearly follow the line of
perfect reliability.

Figure 7 shows the model’s performance by cloud regime. In the attributes diagram for £ j jqu
(Figure 7a), reliability is nearly perfect for all three cloud regimes, except a general underprediction
up to ~20 W m? for no-cloud examples. For Fg;)OA (Figure 7b), reliability is good for all three
cloud regimes, except a general underprediction up to ~20 W m2 for single-layer cloud and ~50 W

m2 for multi-layer cloud, as well as a large underprediction for single-layer cloud in the two lowest

bins. In other words, the lowest predicted F@OA values for single-layer cloud tend to be far too
low. For F),.: (Figure 7c), reliability is nearly perfect for all three cloud regimes, except a general
overprediction up to ~20 W m? for multi-layer cloud. In the bias profile for heating rate (Figure
7d), examples with no cloud and single-layer cloud have an absolute bias < 0.1 K day™! except in the
upper stratosphere, as for the whole testing set (Figure 6d). However, for examples with multi-layer

cloud, absolute bias slightly exceeds 0.1 K day™! at a few heights in the mid-troposphere. Also, in

the profiles of MAE and MAE skill score (Figures 7e-f), the worst values in the troposphere are for
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multi-layer cloud in the middle to upper troposphere. This is because (a) multi-layer clouds lead to
the most complex heating-rate profiles, due to the non-local effects discussed in Section 3c3; (b)
examples with multi-layer cloud are rare (0.86% of U-net++-training examples), and rare events
are inherently hard to predict. For all three cloud regimes, the reliability curves for heating rate
(Figures 7g-1) are near the perfect line. However, the reliability curves are jagged for multi-layer
cloud, due to small sample size.

Supplemental Figure S20 is analogous to Figure 7, except for a U-net++ that does not include
F,er in the loss function (i.e., one that uses the post-processing approach discussed in Section 3c1).
For examples with liquid cloud, predictions of Fj (ﬁn (panel a) and F},¢; (panel c) are significantly
worse with the post-processing approach.

Figure 8 shows the model’s performance by site. In attributes diagrams for the flux components
(Figures 8a-c), reliability is nearly perfect, except that at a few sites, small positive predictions of
Fj ggn and Fj,.; are up to ~20 W m™2 too low. In the error profiles for heating rate (Figures 8d-f),
all seven sites are similar to the whole testing set (Figures 6d-f), so there are no apparent outliers.
Figures 8g-1 show the reliability curves for heating rate at three randomly selected sites. Reliability
is nearly perfect, except in the lower troposphere at the Perdido oil rig, where higher predictions
are up to ~0.5 K day™! too low. This issue does not occur at the other four sites (not shown), whose
reliability curves look similar to those for Bishop and Hilo.

Figure 9 shows the model’s performance by zenith angle. For the sake of brevity, we show results
for 1-km heating rate (lower troposphere), 10-km heating rate (upper troposphere in the testing
data, which contain only tropical sites), 46-km heating rate (upper stratosphere; the height with
the largest climatological heating rate), and F},.;. Correlation is the Pearson correlation between

predictions and observations, which ranges from [—1,1] and has an optimal value of 1. Kling-

Gupta efficiency (KGE; Gupta et al. 2009) ranges from (—oo, 1], and the optimal value of 1 occurs
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when the predictions and observations have perfect correlation, equal means, and equal variances.
The unitless scores (left column of Figure 9) show that performance is worst at the extreme zenith
angles, when the Sun is close to directly overhead or the horizon. However, except correlation and
KGE for 46-km heating rate, unitless scores are close to their optimal values, even at local minima.
Meanwhile, scores with units (MAE, RMSE, and bias) are shown in the right column of Figure
9. These scores are generally close to their optimum (0), except at zenith angles below 20°. At
these zenith angles, the model has a negative bias for heating rate through most of the troposphere
(including heights not shown) and negative bias for F},.;, caused by a large negative bias for Fj gucm

and small negative bias for FE;,OA (not shown). Zenith angles below 20° rarely occur in the training
data (non-tropical sites only), so it is not surprising that the model has difficulty in generalizing to

these scenarios.

c. Experiment 2

Again, results of the hyperparameter experiment are relegated to the Supplemental Material.
The main conclusion to note here is the same as for Experiment 1: the U-net++ performs better
with less regularization, which controls overfitting. Because models in Experiment 2 are trained
with data from all latitudes, this is the model that would be used in NWP. Ultimately, we select the
model with 4 fully connected layers, a dropout rate of 0.0, and L, weight of 10-7. Results shown in
the rest of this section, for the selected model only, are based on testing data rather than validation
data.

Figure 10 shows the model’s performance on the whole testing set (Assorted2 sites in 2017).
For each flux component, the reliability is nearly perfect, as is the match between the observed
and predicted histograms (Figures 10a-c). For heating rate, all heights have an absolute bias <

0.1 K day!, including in the upper stratosphere (Figure 10d). As for the tropical testing data in
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Experiment 1, there is a spike in MAE at 46 km (Figure 10e), due to absorption by ozone, but the
corresponding dip in MAE skill score is small (Figure 10f). In the reliability curve for heating
rate (Figure 10g), all heights are nearly perfect, except in the lower troposphere, where higher
predictions are up to ~0.25 K day! too low.

Figure 11 shows the model’s performance by cloud regime. For each flux component and each
cloud regime, the reliability is nearly perfect (Figures 11a-c). For heating rate, all heights and all
cloud regimes have an absolute bias < 0.1 K day™! (Figure 11d), while values of MAE (Figure 11e)
and MAE skill score (Figure 11f) are similar to the whole testing set. For all three cloud regimes,
the reliability curves for heating rate (Figures 11g-i) are nearly perfect, with two exceptions: jagged
curves for multi-layer cloud, due to small sample size, and the lower troposphere for single-layer
cloud, where higher predictions are up ~0.5 K day™! too low.

Figure 12 shows the model’s performance by site. For each flux component and each site, the
reliability is nearly perfect (Figures 12a-c), except an underprediction of ~50 W m™2 at the north
values here

pole for the lowest bin (Figure 12b). In other words, the lowest predicted

Fg;)OA Fg;)OA
tend to be 50 W m™2 too low. By inspection (not shown), we have found that this underprediction
is associated with low albedos (< 0.7) at the north pole, which occur during the ice-free part of the
year. Although the model correctly predicts that a lower albedo (less reflection from the surface)
will lead to less upwelling radiation, it exaggerates this effect. For heating rates, all heights and
sites have an absolute bias < 0.1 K day™!, except at 46 km at the Perdido oil rig, where bias is
~-0.11 K day‘1 (Figure 12d). Profiles of MAE (Figure 12¢) and MAE skill score (Figure 12f) are
similar to the whole testing set, except for MAE at 46 km, where values are smaller at the Arctic
sites (north pole and Tiksi) and larger at the tropical sites (Perdido and Bishop). This is because

climatological 46-km heating rates are smaller at the Arctic sites (average of 29.7 K day™! over the

testing data) and larger at the tropical sites (36.3 K day™!). Reliability for heating rate is nearly
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perfect at the three sites shown (Figure 12g-1), except in the lower troposphere at Perdido, where
higher predictions are up to ~0.5 K day™! too low. This issue also occurs for Perdido in Experiment
1 (Figure 81). For the two sites not shown, reliability at Bishop is nearly perfect (similar to north
pole and Lamont), while reliability at Tiksi has a similar issue to Perdido, except only at the lowest
few heights and with an underprediction up to only ~0.25 K day™!.

Figure 13 shows the model’s performance by zenith angle. The unitless scores (left column)
show that performance is worst at the extreme zenith angles, but in general scores are better than
for Experiment 1 (Figure 9), including at the lowest zenith angles. This is because the model
from Experiment 2 is trained with more low zenith angles, due to the inclusion of tropical sites.
Meanwhile, scores with units (right column of Figure 13) are very close to their optimum (0),
especially bias, at all zenith angles. This contrasts starkly with the results for Experiment 1 (Figure

9), where every target variable has substantial bias for zenith angles < 20°.

d. Additional analyses

Supplemental Section Ca presents a Kolmogorov-Smirnov and bias-variance analysis for both
selected models (from Experiments 1 and 2). The main conclusions are (a) the models have
more random variance than systematic bias; (b) although the difference between the predicted
and observed distributions of heating rate are small, they are generally significant at the 99%
level (as determined by the Kolmogorov-Smirnov p-value), because the sample sizes are large.
Supplemental Section Cb shows results on training, validation, and testing data for both selected
models. Although both models overfit to some extent, results on the testing data are highly skillful,
as discussed in Sections Sb-c. Also, the model from Experiment 1 overfits more, because it

performs more extreme spatial generalization (from non-tropical to tropical sites).
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e. Comparison of selected models

Overall, the model from Experiment 2 appears to outperform the model from Experiment 1
on testing data, consistent with our hypothesis. The comparison is not perfectly apples-to-apples,
because the two testing sets contain different collections of sites, but they have two sites in common,
both in the tropics: the Perdido oil rig and Bishop, Grenada. According to the site-specific reliability
curves for heating rate (c.f. Figures 8g-i and 12g-i), there is no substantial difference between the
two models. According to the site-specific attributes diagrams for flux components (c.f. Figures
8a-c and 12a-c), site-specific error profiles for heating rates (c.f. Figures 8d-f and 12d-f), and
results for the lowest zenith angles (c.f. Figures 9 and 13) — seen primarily in the tropics — the
model from Experiment 2 is significantly better.

Supplemental Section Cc compares the two models on a second testing set, containing non-
tropical sites in 2017. The purpose of this analysis is to achieve a fairer comparison, using the same
data. The model from Experiment 2 performs better on the second testing set as well, even though
it was trained with only some tropical sites, while the model from Experiment 1 was trained with
all tropical sites. We suspect that training on tropical sites allowed the model from Experiment 2
to learn additional relationships that improve its performance on non-tropical sites.

At inference time, both models (including the U-net++ and isotonic regression) can generate
predictions for ~500 000 profiles in one minute, while the shortwave RRTM can process ~50
profiles in one minute. Thus, the ML models are ~10* times faster than the shortwave RRTM,
which they emulate with impressive skill.

Lastly, Supplemental Section Cd compares the selected model (U-net++) from Experiment 1 to a
traditional U-net and fully connected neural network (FCNN), developed via similar hyperparam-

eter searches. The U-net and U-net++ clearly and significantly (at the 99% level) outperform the
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FCNN, demonstrating the advantage of spatially aware layers (convolution and pooling). However,
differences between the U-net and U-net++ are mixed, with the U-net performing better on some
target variables and the U-net++ performing better on others. However, we believe that a major
advantage of the U-net++ is superior performance on £}, in profiles with multi-layer cloud. Fj,¢¢

is arguably the single most important target variable (i.e., more important than e

TOA
down’ F up

or heating rate at any individual height), and F},.; errors are highest in profiles with multi-layer
cloud, where radiative transfer is most complicated. Specifically, in profiles with multi-layer cloud,
the U-net++ improves the absolute bias on Fj,.; by ~15 W m2 compared to the U-net, and the
difference is statistically significant. Also, the U-net++ significantly outperforms the U-net in pre-
dicting the other two flux components, Fj (ﬁn and ng’,OA, with multi-layer cloud. We believe that
this advantage of the U-net++ is due to more skip connections better preserving high-resolution
information, which is crucial in profiles with multi-layer cloud and cloud in general (clouds create
a discontinuity in the profile of extinction optical depth, so their exact boundaries matter). Since
we do not train the U-net++ with deep supervision (another modification to U-nets proposed by

Zhou et al. 2019, where intermediate feature maps, not only the output, are included in the loss

function), this advantage of the U-net++ is not a result of deep supervision.

6. Model Interpretation

The permutation test measures the overall importance of each predictor variable, averaged over
all grid points (i.e., all heights for vector predictors) and testing examples. There are four versions
of the permutation test — forward single-pass, forward multi-pass, backward single-pass, and
backward multi-pass — which each handle correlated predictors differently. The backward multi-
pass test begins with all predictors permuted — i.e., randomly shuffled so that values are assigned

to the wrong examples — and iteratively restores (puts back in the correct order) the most important
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predictor still permuted, until all predictors have been restored. The k™ predictor to be restored is
considered the k™-most important. For more details on the permutation test, see McGovern et al.
(2019). We run the permutation test with one of two loss functions — the dual-weighted MSE
for heating rates (first term in Equation 3) or standard MSE for flux components (second term in
Equation 3) — so that we can determine the most important predictors for each type of output.
Figure 14 shows results for the backward multi-pass test, and Supplemental Figures S21-S23 show
results for the other versions, which are very similar. We run the permutation test for both selected
models, from Experiments 1 and 2.

With the heating-rate-only loss function, results for the two models (Figures 14a,c) agree on the
top four predictors: zenith angle, LWC, downward LWP, and relative humidity. In other words,
the most important factors for radiative heating are Sun angle, liquid water, and water vapour, with
ice being much less important — likely because the dual-weighted MSE emphasizes large heating
rates, which typically are not caused by ice clouds (Turner et al. 2018). With the flux-only loss
function, results for the two models (Figures 14b,d) agree on the top four predictors: downward
LWP, LWC, zenith angle, and surface albedo. Surface albedo is especially important for ng’)OA, as
higher-albedo surfaces reflect more radiation back to space. Surface albedo is much less important
for heating rates (Figures 14a,c), because heating rates are measured at all 73 heights, which are

generally far from the surface. All results discussed in this paragraph are significant at the 99%

level, as indicated by the bold font in Figure 14.

7. Summary and Future Work

We developed U-net++ models, a type of deep learning, to emulate the shortwave RRTM. The
U-net++ architecture contains more skip connections than the traditional U-net architecture, which

improved our flux predictions in profiles with multi-layer cloud, while the inclusion of physical
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constraints improved both flux and heating-rate predictions for multi-layer cloud. We bias-corrected
the U-net++ models with isotonic regression, a simple ML method often used for this purpose. We
conducted two hyperparameter experiments to find the best U-net++ configurations for predicting
two output types: a heating-rate profile and three flux components (Fjg;n, Fg;,OA, and Fer). In
both experiments we found that the models perform best with minimal regularization, contrary to
our prior experience with ML in atmospheric science. This result may generalize to other perfect-
model experiments, where ML is used to emulate another model rather than fit observations.

We performed two experiments, with sites split among training and testing in different ways.
In Experiment 1, we trained the models on non-tropical sites and tested on tropical sites, with
the purpose of testing the models’ spatial-generalization ability under extreme conditions (to a
completely different region). In Experiment 2, we trained the models on assorted sites from all
regions and tested on a different set of assorted sites from all regions, with the purpose of creating
the best model possible for use as a parameterization in NWP. The selected model from Experiment
1 showed impressive skill on the testing set (tropical sites), but with four notable deficiencies. First,
it has a large bias and MAE for heating rate in the upper stratosphere, where radiative heating is
dominated by ozone absorption. Second, the lowest Fg;,OA predictions for examples with single-
layer cloud have a large negative bias, of several hundred W m™2. Third, the heating-rate bias for
multi-layer cloud slightly exceeds 0.1 K day™! (considered a threshold for stable integration into
NWP) in the mid-troposphere. Fourth, at zenith angles below 20° (seldom seen in the training
data), the model has a negative bias for the three flux components and for heating rates throughout
the troposphere. With the exception of large MAE for heating rates in the upper stratosphere,

none of these deficiencies appear in the testing data for the selected model from Experiment 2.

According to the permutation test for both models, the most important factors for heating rate
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(flux components) are zenith angle, liquid water, and water vapour (liquid water, zenith angle, and
surface albedo).

The remainder of this section focuses on the model from Experiment 2, which outperforms the
model from Experiment 1. In addition to closely emulating the shortwave RRTM, this model is
~10% times faster than the shortwave RRTM. In terms of heating rate, our performance is better
than the emulator of Krasnopolsky et al. (2010, henceforth K10), which is a traditional (or fully
connected) neural network. Their neural network achieves a PRMSE of 0.15 K day! (their Table
1), versus our 0.056 K day! on testing data*. In terms of Fg;)OA (K10 do not show results for the
other flux components), our bias on the whole testing set is -2.2 W m2, with bias at individual
testing sites ranging from -3.2 to -1.2 W m™2. The overall bias of K10’s emulator (their Figure 2, top
right) is also negative, with zonal-mean bias ranging from approximately -3 to +1.25 W m™2. Thus,
our results for Fg;,OA are comparable with K10. However, the comparison is not apples-to-apples,
because K10 evaluate on data from different times and locations; they emulate the RRTMG, rather
than the RRTM; and they emulate the full RRTMG, including aerosols and non-climatological
trace gases.

We attribute the success of our models to four factors. The first is the adoption of U-nets, which
are specially designed to learn from gridded data and make pixelwise predictions. The second
is the adoption of the U-net++ architecture, which outperforms the traditional U-net architecture
in predicting fluxes with multi-layer cloud. The third factor is using isotonic regression for bias
correction, and the fourth is knowledge-guided ML. We achieved knowledge-guided ML by incor-

porating a physical law (Equation 2) into the U-net++ models to ensure physically consistent and

skillful F;,¢; predictions, developing a custom loss function (Equation 3) to emphasize large heating

4Even for the model from Experiment 1, which is trained on non-tropical sites and tested on tropical sites, the testing PRMSE is 0.108 K day~!.
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rates, and including custom predictors to allow vertical non-locality in heating-rate predictions,
which is especially important for examples with multi-layer cloud.

We will continue this work along five lines. The first is developing models to emulate the full
shortwave RRTM, including the effects of aerosols, precipitation, and non-climatological profiles
of trace gases. Second, we will also emulate the longwave RRTM, using a similar framework.
Third, we will make the models grid-agnostic (insensitive to exact heights in the profile), so that
they can be applied to NWP models with different vertical grids. Fourth, we will experiment
with other neural-network architectures, such as the U-net 3+ (Huang et al. 2020), which contains
“full-scale” skip connections, combining data from all spatial resolutions at once, rather than just
neighbouring resolutions as in the U-net++. Fifth, we will test the new models (emulating the full
shortwave and longwave RRTM) online, i.e., inside an NWP model as parameterizations. Since
the models developed herein are orders of magnitude faster than the RRTM, if they were integrated
stably into NWP, they could also be called at every atmospheric time step, which should improve
the overall accuracy of the NWP model and free up computing time for other improvements to

NWP.
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Table 1: Description of predictor variables. “Vector” means that the variable is defined at all 73
heights. If the cell does not contain a check mark, the variable is a scalar. Downward LWP at
height 2 is LWC integrated from the top of the atmosphere down to z, and upward LWP at height
z 1s LWC integrated from the surface up to z. The definitions of IWP and WVP are analogous.

Variable Units | Vector?

Solar zenith angle Degrees

Surface albedo Unitless

Temperature Kelvins | v/
Pressure Pa v
Specific humidity kgkg! | v
Relative humidity Unitless | v/
Liquid-water content (LWC) kg m v
Ice-water content (LWC) kg m™ v
Downward liquid-water path (LWP) | kgm? |V
Downward ice-water path (IWP) kgm? |V
Downward water-vapour path (WVP) | kgm? |
Upward LWP kgm? |V
Upward IWP kgm? | v
Upward WVP kgm? |V
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Table 2: Training, validation, and testing data for each experiment. “Non-tropical” means both

Arctic and mid-latitude. “Assorted1” contains sites from all regions; “Assorted2” also contains

sites from all regions, which do not overlap with those in Assorted1. The validation and testing
sets are used to evaluate bias-corrected U-net++ models (with isotonic regression).

Experiment 1

Dataset Years Sites Number of
Examples
Training for U-net++ 2019-2020 Non-tropical 1.50 million
Training for isotonic re- | 2018, excluding last | Non-tropical 0.89 million
gression week
Validation 2017, excluding last | Non-tropical 0.42 million
week
Testing 2017, excluding last | Tropical 0.26 million
week
Experiment 2
Dataset Years Sites Number of
Examples
Training for U-net++ 2019-2020 Assortedl 1.72 million
Training for isotonic re- | 2018, excluding last | Assortedl 0.99 million
gression week
Validation 2017, excluding last | Assortedl 0.55 million
week
Testing 2017, excluding last | Assorted2 0.13 million
week
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Table 3: Normalization of predictor and target variables for U-net++ models.

Variable(s) Method

Predictor variables | Transform to uniform distribution, then z-scores

Fil¢ and FIOA | Transform to uniform distribution over [0, 1]

Heating rate No normalization (leave in units of K day!)
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Table 4: Experimental hyperparameters for U-net++ models. The loss function is Equation 3.

Hyperparameter Values Attempted

Number of fully connected layers 2,3,4,5
Dropout rate for fully connected layers | 0.0, 0.1, 0.2, 0.3, 0.4, 0.5

L, weight for convolutional layers 1079, 1002, 1009, 103, 1059, 1043,

10—4.0’ 10—3.5 , 10—3.0
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List of Figures

Fig. 1.  Architecture of traditional U-net with two fully connected layers. In each green box, “h” and
“c” are the number of heights and channels (feature maps), respectively. The convolutional
layer included wtih each upsampling layer (upward purple arrow), in addition to filling in
spatial information, reduces the number of channels. For example, in the set of feature maps
labeled “A,” 256 channels come from the skip connection to the left and 512 channels come
from the upsampling layer below. Thus, the convolutional layer included with this upsampling
layer must reduce 768 channels to 512, which it achieves by having 512 filters. The shallowest
layer is the convolutional layer at the top-left, and the deepest is the convolutional layer at
the top-right. The top-left set of feature maps contains predictors: 14 variables at 73 heights.
Although two predictor variables (albedo and zenith angle) are scalars, they are repeated over
the 73 heights to create dummy grids, which are more easily input to the U-net. The outputs
(predictions) are a length-73 grid of radiative-heating rates (top right) and three scalar fluxes
(bottom). . . . . ..o

Fig. 2.  Architecture of U-net++ with two fully connected layers. Each “downsampling” arrow
corresponds to a pooling layer followed by two convolutional layers with 3-pixel filters, as in
one row of the downsampling side in Figure 1. Each “upsampling” arrow corresponds to an
upsampling layer followed by two convolutional layers with 3-pixel filters, as in one row of
the upsampling side in Figure 1. For each green box with multiple incoming arrows, feature
maps are combined by concatenation (i.e., stacking along the channel dimension), then
convolution (with 3-pixel filters) to achieve the desired number of channels. For example,
the set of feature maps labeled “D” is produced by concatenating A, B, and the upsampled
version of C — which yields 1024 channels — then applying a convolutional layer that has
256 filters and therefore outputs 256 channels. . . . . . . . . . . . . . . 48

Fig. 3. Predictor and target variables for one example: Santa Barbara, California, at 2200 UTC 16
Jan 2019. [a-c] All but four predictor variables: pressure, relative humidity, surface albedo,
and solar zenith angle. [d] Target variables. Although the RRTM produces full profiles
of downwelling and upwelling flux, the U-net++ models predict only the flux components

required by an NWP model: Fj ({; ,, (the bottom value in the downwelling-flux profile), Fg;OA
(the top value in the upwelling-flux profile), and F,;, defined as Fjg;n —FIOA . 0049

Fig. 4. Sites used for model development (training, validation, and testing). Purple sites are in the
Arctic; green sites are in the mid-latitudes; and orange sites are in the tropics. [a] All sites.
[b] Testing sites for Experiment 1. [c] Testing sites for Experiment2. . . . . . . . . 50

Fig. 5. Distributions of target variables over the full dataset (all sites from 2017-2020). . . . . . 51

Fig. 6. Performance of selected model from Experiment 1 on testing data. [a-c] Attributes diagram
for each flux component. The orange curve is the reliability curve; the diagonal grey line is
the perfect-reliability line; the vertical grey line is the climatology line; the horizontal grey
line is the no-resolution line; the blue shading is the positive-skill area, where MSE skill
score > 0; and the inset histograms show the distributions of predicted and observed values.
[d-f] Profiles of bias, MAE, and MAE skill score for heating rate. [g] Reliability curve at
each height for heating rate. Each orange curve in panels a-f is the mean over 1000 bootstrap
replicates. The 99% confidence interval is also plotted, but it is narrower than the line and
thus invisible. . . . . . . . . . . . . . . . . . . . . . . 52

Fig.7. Performance of selected model from Experiment 1 on testing data, by cloud regime. [a-c]
Attributes diagram (explained in the caption of Figure 6) for each flux component. The inset
histograms and reference lines are based only on examples with multi-layer cloud. [d-f]
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Profiles of bias, MAE, and MAE skill score for heating rate. [g] Reliability curve at each
height for heating rate, based only on examples with no cloud. [h] Same but for single-layer
cloud. [i] Same but for multi-layer cloud. Each curve in panels a-f is the mean over 1000
bootstrapped replicates, and the surrounding shaded area is the 99% confidence interval. . . 53

Fig. 8. Performance of selected model from Experiment 1 on testing data, by site. [a-c] Attributes
diagram (explained in the caption of Figure 6) for each flux component. In this case, The
inset histograms and reference lines are based only on examples at Hilo, Hawaii. [d-f]
Profiles of bias, MAE, and MAE skill score for heating rate. [g] Reliability curve at each
height for heating rate, at Bishop, Grenada. [h] Same but for Hilo, Hawaii. [i] Same but for
the Perdido oil rig. Each curve in panels a-f is the mean over 1000 bootstrapped replicates,
and the surrounding shaded area is the 99% confidence interval. . . . . . . . . . 54

Fig. 9. Performance of selected model from Experiment 1 on testing data, by solar zenith angle (0°
means directly overhead, and 90° means on the horizon). [a-b] Scores without and with
units, respectively, for heating rate at 1000 m AGL. [c-d] Same but for heating rate at 10 000
m AGL. [e-f] Same but for heating rate at 46 000 m AGL. [g-h] Same but for net flux. In
each box plot, the center line is the median; the ends are the 25t and 75t percentiles; and
the whiskers are the 5 and 95" percentiles. Each curve in panels a-h is the mean over 1000
bootstrapped replicates, and the surrounding shaded area is the 99% confidence interval. . . 55

Fig. 10. Performance of selected model from Experiment 2 on testing data. Formatting is explained
in the caption of Figure 6, and each panel here is analogous to the same-letter panel in Figure
6. The x-axis ranges in panels d-e are markedly smaller here than in Figure6. . . . . . 56

Fig. 11. Performance of selected model from Experiment 2 on testing data, by cloud regime. In the
attributes diagrams for flux components (a-c), the inset histograms and reference lines are
based only on examples with multi-layer cloud. Formatting is explained in the caption of
Figure 7, and each panel here is analogous to the same-letter panel in Figure 7. The z-axis
ranges in panels d-e are markedly smaller here than in Figure7. . . . . . . . . . 57

Fig. 12. Performance of selected model from Experiment 2 on testing data, by site. In the attributes
diagrams for flux components (a-c), the inset histograms and reference lines are based only
on examples at Lamont, Oklahoma. Formatting is explained in the caption of Figure 8, and
each panel here is analogous to the same-letter panel in Figure 8. The z-axis ranges in panels
d-e are markedly smaller here than in Figure8. . . . . . . . . . . . . . .58

Fig. 13. Performance of selected model from Experiment 2 on testing data, by solar zenith angle.
Formatting is explained in the caption of Figure 9, and each panel here is analogous to the
same-letter panel in Figare9. . . . . . . . . . . . . . . . . . .5

Fig. 14. Results of backward multi-pass test on testing data for (a) best model from Experiment 1, with
the heating-rate-only loss function; (b) best model from Experiment 1, with the flux-only
loss function; (c) best model from Experiment 2, with the heating-rate-only loss function;
(d) best model from Experiment 2, with the flux-only loss function. The value for the bar
labeled “x;” is the loss after restoring x; and all predictors in the bars above x;. The kh
predictor to be restored, and thus the k"-most important, is k™ from the top. Orange error
bars show the 99% confidence interval, based on bootstrapping 1000 times. If variable z;
is in bold font, this means that x; is significantly more important than the variable below (at
the 99% confidence level), based on a paired-bootstrapping test with 1000 replicates. . . . 60
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—b Convolutional layer with 1-pixel filters
Set of scalar features
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Figure 1: Architecture of traditional U-net with two fully connected layers. In each green box, “h”
and “c” are the number of heights and channels (feature maps), respectively. The convolutional
layer 1ncluded wtih each upsampling layer (upward purple arrow), in addition to filling in spatial
information, reduces the number of channels. For example, in the set of feature maps labeled “A,”
256 channels come from the skip connection to the left and 512 channels come from the
upsampling layer below. Thus, the convolutional layer included with this upsampling layer must
reduce 768 channels to 512, which it achieves by having 512 filters. The shallowest layer is the
convolutional layer at the top-left, and the deepest is the convolutional layer at the top-right. The
top-left set of feature maps contains predictors: 14 variables at 73 heights. Although two
predictor variables (albedo and zenith angle) are scalars, they are repeated over the 73 heights to
create dummy grids, which are more easily input to the U-net. The outputs (predictions) are a
length-73 grid of radiative-heating rates (top right) and three scalar fluxes (bottom).
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Figure 2: Architecture of U-net++ with two fully connected layers. Each “downsampling” arrow
corresponds to a pooling layer followed by two convolutional layers with 3-pixel filters, as in one
row of the downsampling side in Figure 1. Each “upsampling” arrow corresponds to an
upsampling layer followed by two convolutional layers with 3-pixel filters, as in one row of the
upsampling side in Figure 1. For each green box with multiple incoming arrows, feature maps are
combined by concatenation (i.e., stacking along the channel dimension), then convolution (with
3-pixel filters) to achieve the desired number of channels. For example, the set of feature maps
labeled “D” is produced by concatenating A, B, and the upsampled version of C — which yields
1024 channels — then applying a convolutional layer that has 256 filters and therefore outputs 256
channels.

—
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Figure 3: Predictor and target variables for one example: Santa Barbara, California, at 2200 UTC
16 Jan 2019. [a-c] All but four predictor variables: pressure, relative humidity, surface albedo,
and solar zenith angle. [d] Target variables. Although the RRTM produces full profiles of
downwelling and upwelling flux, the U-net++ models predict only the flux components required

by an NWP model: F5/¢ (the bottom value in the downwelling-flux profile), FIOA (the top

down

value in the upwelling-flux profile), and F,;, defined as ch{fm — FToA,

50
Accepted for publication in Journal of Atmdspheric-ait“Oceanic Technology - DOr10. PI75/ITECHD221-0007.1.



(a) 90°N -
80°N y - .
70°N
60°N
50°N [& & =5
40°N Pt Sl e s
30°N [ Y W 0l
20°N S\ o T
10°N bt "

Mg

n

X

4

0° 30°E  60°E 90°E  120°E 150°E 180° 150°W 120°W 90°W 60°W  30°W

(b)28
24

2
2

1
1
14
1

Perdido oil rig

Honolulu HI
o

| J GUCIHtGIICIIIIU BG‘Y'
Hilo-H! ! - ! sl
1 i e Rohlsen USVi

°N
°N
°N
°N
°N
°N
°N
°N
°N

2
0
8
6
2 Bisho

D1S5HOK;

152°W 144°W 136°W 128°W 120°W 112°W 104°W 96°W 88°W 80°W 72°W 64°W

(c) o0°N ] North pole

80°N |
70°N
60°N
50°N fifuspennl e e
40°N 2SSl Lamant, Oklakopaa

S S —
Tiksk Russig ~ =

300N R X0 Rerdido pilig

20°N ‘ TR ~ZBishop, Grenada
10°N b— S 3 o @
0° 30°E 60°E 90°E  120°E 150°E 180° 150°W 120°W 90°W 60°W  30°W
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Testing sites for Experiment 1. [c] Testing sites for Experiment 2.
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Figure 6: Performance of selected model from Experiment 1 on testing data. [a-c] Attributes
diagram for each flux component. The orange curve is the reliability curve; the diagonal grey line
is the perfect-reliability line; the vertical grey line is the climatology line; the horizontal grey line

is the no-resolution line; the blue shading is the positive-skill area, where MSE skill score > 0;
and the inset histograms show the distributions of predicted and observed values. [d-f] Profiles of
bias, MAE, and MAE skill score for heating rate. [g] Reliability curve at each height for heating
rate. Each orange curve in panels a-f is the mean over 1000 bootstrap replicates. The 99%
confidence interval is also plotted, but it is narrower than the line and thus invisible.
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Figure 7: Performance of selected model from Experiment 1 on testing data, by cloud regime.
[a-c] Attributes diagram (explained in the caption of Figure 6) for each flux component. The inset
histograms and reference lines are based only on examples with multi-layer cloud. [d-f] Profiles
of bias, MAE, and MAE skill score for heating rate. [g] Reliability curve at each height for
heating rate, based only on examples with no cloud. [h] Same but for single-layer cloud. [i] Same
but for multi-layer cloud. Each curve in panels a-f is the mean over 1000 bootstrapped replicates,
and the surrounding shaded area is the 99% confidence interval.
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Figure 8: Performance of selected model from Experiment 1 on testing data, by site. [a-c]
Attributes diagram (explained in the caption of Figure 6) for each flux component. In this case,
The inset histograms and reference lines are based only on examples at Hilo, Hawaii. [d-f]
Profiles of bias, MAE, and MAE skill score for heating rate. [g] Reliability curve at each height
for heating rate, at Bishop, Grenada. [h] Same but for Hilo, Hawaii. [1] Same but for the Perdido
oil rig. Each curve in panels a-f is the mean over 1000 bootstrapped replicates, and the

surrounding shaded area is the 99% confidence interval.
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Figure 9: Performance of selected model from Experiment 1 on testing data, by solar zenith angle
(0° means directly overhead, and 90° means on the horizon). [a-b] Scores without and with units,
respectively, for heating rate at 1000 m AGL. [c-d] Same but for heating rate at 10 000 m AGL.
[e-f] Same but for heating rate at 46 000 m AGL. [g-h] Same but for net flux. In each box plot, the

center line is the median; the ends are the 251 and 75t percentiles; and the whiskers are the 5th

and 95" percentiles. Each curve in panels a-h is the mean over 1000 bootstrapped replicates, and
the surrounding shaded area is the 99% confidence interval.
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Figure 10: Performance of selected model from Experiment 2 on testing data. Formatting is
explained in the caption of Figure 6, and each panel here is analogous to the same-letter panel in
Figure 6. The x-axis ranges in panels d-e are markedly smaller here than in Figure 6.
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Figure 11: Performance of selected model from Experiment 2 on testing data, by cloud regime. In
the attributes diagrams for flux components (a-c), the inset histograms and reference lines are
based only on examples with multi-layer cloud. Formatting is explained in the caption of Figure
7, and each panel here is analogous to the same-letter panel in Figure 7. The x-axis ranges in
panels d-e are markedly smaller here than in Figure 7.
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Figure 12: Performance of selected model from Experiment 2 on testing data, by site. In the
attributes diagrams for flux components (a-c), the inset histograms and reference lines are based
only on examples at Lamont, Oklahoma. Formatting is explained in the caption of Figure 8, and
each panel here is analogous to the same-letter panel in Figure 8. The x-axis ranges in panels d-e

are markedly smaller here than in Figure 8.
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Figure 13: Performance of selected model from Experiment 2 on testing data, by solar zenith
angle. Formatting is explained in the caption of Figure 9, and each panel here is analogous to the
same-letter panel in Figure 9.
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(@) Exp 1, heating rates only (b) Exp 1, fluxes only
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Figure 14: Results of backward multi-pass test on testing data for (a) best model from Experiment
1, with the heating-rate-only loss function; (b) best model from Experiment 1, with the flux-only
loss function; (c) best model from Experiment 2, with the heating-rate-only loss function; (d) best
model from Experiment 2, with the flux-only loss function. The value for the bar labeled “z;” is

the loss after restoring x; and all predictors in the bars above x;. The k™ predictor to be restored,

and thus the £"-most important, is £™ from the top. Orange error bars show the 99% confidence
interval, based on bootstrapping 1000 times. If variable x; is in bold font, this means that z; is
significantly more important than the variable below (at the 99% confidence level), based on a
paired-bootstrapping test with 1000 replicates.
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