

1 Title: Evaluation of Global Wave Probabilities Consistent with Official Forecasts

2 Authors: Charles R. Sampson¹, Efren A. Serra², John A. Knaff³, Joshua H. Cossuth⁴

3 Affiliations: ¹Naval Research Laboratory, Monterey, CA, USA

4 ²DeVine Consulting, Naval Research Laboratory, Monterey, CA, USA

5 ³NOAA STAR, CIRA, Fort Collins, CO, USA

6 ⁴Office of Naval Research, Arlington, VA, USA

7

8 Corresponding author: Charles R. Sampson, NRL Monterey. Buck.Sampson@nrlmry.navy.mil

9

1

Early Online Release: This preliminary version has been accepted for publication in *Weather and Forecasting*, may be fully cited, and has been assigned DOI 10.1175/WAF-D-21-0037.1. The final typeset copyedited article will replace the EOR at the above DOI when it is published.

10

11 Abstract

12 The U.S. Navy is keenly interested in analyses and predictions of waves at sea due to
13 their effects on important tasks such as shipping, base preparedness and disaster relief. U.S.
14 Tropical Cyclone (TC) Forecast Centers routinely disseminate wind probabilities consistent with
15 official TC forecasts worldwide, but do not do the same for wave forecasts. These probabilities
16 are especially important at longer leads where TC forecast accuracy diminishes. This work
17 describes global wave probabilities consistent with both the official TC forecasts and their wind
18 probabilities. Real-time runs for 84 TCs between May 2018 and March 2019, with probabilities
19 generated for 12-ft and 18-ft significant wave heights are used to calculate verification
20 statistics. This results in 347, 319, 261, 214, 155, and 112 verification cases at lead times of 1, 2,
21 3, 4, and 5 days where each verification case consists of a 20x20 degree latitude longitude grid
22 around the verifying TC position. When compared with wave probabilities generated solely by
23 a global numerical weather prediction model, the wind probability-based algorithm
24 demonstrates improved consistency with official forecasts and provides additional benefits.
25 Those benefits include an improved capability to discriminate between 12-ft and 18-ft
26 significant wave events and non-events. The verification statistics also shows that the wind
27 probability-based algorithm has a consistent high bias. How these biases can be reduced in
28 future efforts is also discussed.

29

30

31 Significance Statement

32 The extreme wave heights associated with tropical cyclones are difficult to accurately forecast
33 deterministically or probabilistically. To exacerbate matters, existing global ensemble systems
34 cannot resolve the strongest winds in hurricanes and typhoons and provide input to wave
35 models that is inconsistent with official forecasts. This paper describes an algorithm that
36 provides ensemble winds wave products that are both more realistic and consistent with
37 official forecasts from tropical cyclone forecast centers. We show that this method provides
38 improved identification of extreme wave events, which should provide improved input for ship
39 navigation and hazard avoidance that saves both lives and property.

40

41 1. Introduction

42 U.S. Navy operations are adversely impacted by high seas, especially those from tropical
43 cyclones (TCs). In particular, the U.S. Navy is concerned about significant wave heights and
44 their effects on safely routing ships, routine and emergency ship sorties, and Human Assistance
45 Disaster Relief activities. Traditionally, wave model ensembles are run with Numerical Weather
46 Prediction (NWP) model surface winds to produce significant wave heights and wave height
47 probabilities around TCs. However, the NWP models are generally inconsistent with official
48 forecasts from the U.S. TC forecast centers and lack the resolution to adequately capture large
49 gradients in TC structure specified in the official forecasts (e.g., Tolman et al. 2005). This is
50 problematic for forecasters and downstream applications as the inconsistencies add confusion

51 to an already stressful situation. To address this issue, the U.S. Navy's Fleet Numerical
52 Meteorology and Oceanography Center (FNMOC) implemented a deterministic global wave
53 model forecast that uses post-processed winds from U.S. TC forecast centers as input to
54 WAVEWATCH III® (WW3; Tolman 1991, Tolman et al. 2002, NCEP 2020). This algorithm is
55 named for the WAVEWATCH III model (WW3) and its input TC winds from the U.S. TC forecast
56 centers (OFCL), thus named WW3TCOFCL (Sampson et al. 2013). Faced with deficiencies in
57 both the forcing winds and resolution for forecasting TC generated waves in the Northwest
58 Australian region, the Australian Bureau of Meteorology (Zieger et al. 2018, Aijaz et al. 2019)
59 designed a post-processing method that correct wind distribution biases associated with TCs in
60 the NWP model ensembles used to force their high resolution (8 km) wave model. For each
61 ensemble member, the method constructs a synthetic vortex to replace the existing one,
62 keeping the asymmetric flow in in the numerical model. An evaluation of operational real-time
63 runs found improvements in both TC wind and TC-generated wave probabilities, and
64 importantly they had consistency between the winds from the NWP ensemble and the waves.
65 These consistency and resolution issues are important to operations, and as yet there is no
66 operational global wave model ensemble consistent with U.S. TC forecast center forecasts,
67 wind probabilities associated with TC forecasts (DeMaria et al. 2013), and deterministic wave
68 forecasts derived from U.S. forecast center forecasts (Sampson et al. 2013).

69 To address both consistency and resolution issues, a post-processing algorithm has been
70 developed that constructs and inserts realistic wind structure in the vicinity of TCs out to 120 h.
71 These winds are consistent with the forecasts from the U.S. TC forecast centers, which are
72 frequently quite different in track, intensity and/or structure from the NAVGEM or other

numerical model forecasts. These differences between official U.S. TC forecast and NWP forecasts can cause confusion for forecasters, warning managers and the general public in a time when coordinated and clear communication is of the utmost importance. The post-processed winds can then be used in the Navy Global Environmental Model (NAVGEN, Hogan et al. 2015) global wave model ensemble to produce wave probability fields that are consistent with deterministic TC forecasts and wind probabilities generated at the U.S. TC forecast centers. The current incarnation of this algorithm is designed to run as a 20-member ensemble on a 0.25 degree global WW3 grid, the same as currently used at FNMOC. This is an intentional design to be consistent with the current NAVGEN global wave model ensemble so that implementation is simplified, extra computational resources are minimal, and the wind post-processing algorithm can be run independently of the NAVGEN global wave model ensemble. Sampson et al. (2016) demonstrated that more ensemble members would be beneficial, but computational restrictions may not allow for expanding the ensemble. NRL has implemented the post-processing algorithm with the WW3 ensemble, executed in real-time for over a year, and gathered runs for this evaluation. The algorithm, hereafter referred to as WW3TCOFCL Ensemble, is described in section 2. Section 3 provides a description of how the data is used to conduct our evaluation. The result of the evaluations is provided in section 4, where individual cases and probabilistic verification is presented followed by conclusions and discussion of future work.

93 2. Algorithm Description

94 The WW3TCOFCL Ensemble follows the algorithm published in Sampson et al. (2016),
95 except that the number of ensemble members has been reduced to 20 (the same number as in
96 the FNMOc operational WW3 ensemble run using NAVGEM Ensemble surface winds, hereafter
97 referred to as the WW3NAVGEM Ensemble) from 128. The WW3TCOFCL Ensemble grid has
98 also been expanded to a global 0.25x0.25 degree grid to match the operational WW3NAVGEM
99 Ensemble. These changes are made so that the algorithm adheres to computing and other
100 resource constraints at FNMOc, and so that the algorithm could also be implemented within
101 the current WW3NAVGEM Ensemble job instead of as a completely separate algorithm.
102 Expanding the application to a global grid and reducing the number of ensemble members to
103 20 introduced major changes to the algorithm with potentially adverse effects. Also, there
104 have been important changes (new sensors and new methods) in wind structure analysis that
105 occurred at the Joint Typhoon Warning Center since the original evaluation that could
106 potentially change the performance of the WW3TCOFCL Ensemble. And finally, the global grid
107 allows wave to propagate around the world as they do in the real world while the limited
108 domains in Sampson et al. (2016) did not. All these changes require vetting since their overall
109 effects on performance are uncertain.

110 To summarize the current WW3TCOFCL Ensemble algorithm: First, 20 forecast ensemble
111 members from the original 1000 generated using the Wind Speed Probability (WSP) algorithm
112 (DeMaria et al. 2013) are randomly selected. Each WSP ensemble member is made available to
113 the WW3TCOFCL deterministic model (Sampson et al. 2013) independently to create each
114 ensemble member. The ensemble member is essentially the same as an official forecast defined
115 at 0, 12, 24, 36, 48, 72, 96, and 120 h with the extent of the circulation extending to 20 kt at the

116 radius of outermost closed isobar specified in the TC analysis. Hourly TC forecast wind fields
117 are created and interpolated to high-resolution hourly storm-scale gridded fields using O'Reilly
118 and Guza (1993) tessellation. Then, NAVGEM Ensemble surface wind fields are post-processed
119 by removing the NWP model TC vortex from each member's set of forecast fields. Location is
120 determined by using predicted centers from the National Centers for Environmental Prediction
121 (NCEP) vortex tracker (Marchok 2002). The entire area out to the analyzed radius of outermost
122 closed isobar is removed at all forecast times. This is done to remove geographical displaced
123 and structurally different NAVGEM Ensemble forecasts so that only the background field
124 remains. The removed TC vortex is replaced with bilinear interpolated data from the borders of
125 the removed area. The final step of the gridded surface wind processing is inserting the hourly
126 storm-scale gridded fields (one for each active TC) into the NAVGEM 10 m winds (originally at 1
127 degree resolution) to a 0.25x0.25 degree global grid for WW3 v5.16 — the operational version
128 at FNMOC during 2018 and 2019. Even this resolution is insufficient to resolve the highest
129 winds and waves, especially with TCs that have small eyewalls. The resultant set of gridded
130 surface wind field forecasts at 1-h forecast intervals provide the wind forcing for WW3 to
131 generate ocean wave forecasts for each ensemble member. Those ensemble wave forecasts
132 are then combined to yield significant wave height probability fields exceeding a threshold (e.g.,
133 12 or 18 ft) on a 1 degree resolution grid, which has a resolution consistent with the current
134 WW3NAVGEN Ensemble probabilities available from FNMOC for evaluation purposes. An
135 example of the 12-ft significant wave height probabilities on the right side of Fig. 1. Since we
136 are only running 20 members of the WW3 ensemble, the probability fields are generated on a
137 1x1 degree global grid to reduce graininess noted in Sampson et al. (2016). Still, this graininess

138 is visible at longer lead forecast times such as the 96-h WW3TCOFCL Ensemble forecast
139 probabilities shown in Fig. 1.

140 The entire 10-m wind field preparation process takes just a few minutes on a Cray XC-
141 30, and an estimated 1 hour of wall-time to run both the wind field preparation and the 20
142 WW3 ensemble members using 16 processors per ensemble member. Although attempts are
143 made to warm start the WW3TCOFCL Ensemble every 12 hours using the previous 12-h
144 forecast, this was not feasible when NRL computer resources became unavailable for extended
145 periods of time. In these instances, the WW3TCOFCL Ensemble was cold started with
146 potentially adverse effects on seas and swell in the early forecast times. These effects become
147 less important beyond 24 h, but they are worth noting as they are plainly visible in visual
148 inspection.

149

150 3. Evaluation Data

151 The WW3TCOFCL Ensemble was run in real-time on 84 TCs that existed between May
152 2018 and March 2019. NRL was able produce forecast data in the vicinity of TCs in all regions of
153 the globe. As with most non-operational real-time NWP systems, NRL had issues with data
154 acquisition and unscheduled computer downtime. As a result of this computer downtime, the
155 evaluation set has periodic gaps resulting in some artifacts from the many WW3 cold starts,
156 some of which are visible in our evaluation. Since the WW3TCOFCL Ensemble was run on the
157 same grid and has the same number of members as the WW3NAVGEN Ensemble, verification
158 of head-to-head cases will provide insight into both ensembles.

159 For ground truth we use the WW3TCOFCL deterministic model analysis of significant
160 wave height in feet (ft; 1 ft = 0.3048m), as that is the parameter most commonly used in Navy
161 operations. Noting again that the WW3TCOFCL deterministic model uses post-processed winds
162 forecasted by U.S. TC forecast centers. Since the U.S. Navy is most concerned about significant
163 wave heights in ship routing, we chose to evaluate significant wave height probabilities. We
164 present results using WW3TCOFCL deterministic model significant wave height analyses, but we
165 also evaluated results against WW3NAVGEN deterministic analyses. The WW3NAVGEN
166 deterministic model analyses assimilate altimeter data (Cummings and Wittmann 2009), but
167 little difference was found between results using the WW3TCOFCL and WW3NAVGEN
168 deterministic model analyses as ground truth. The 12-and 18-ft thresholds chosen for
169 evaluation are not necessarily the thresholds used for operational forecasting, but span a
170 reasonable range of significant wave heights associated with TCs and are routinely available for
171 the WW3NAVGEN Ensemble.

172

173 To gather data with 12-and 18-ft significant wave heights, which are not common in the
174 tropics, our verification was limited to a 20x20 degree box surrounding the verifying TC
175 position. This area is likely larger than the TC wind field (Frank 1977) and also generally
176 encompasses the extreme waves associated with TCs. In most cases a 20x20 degree box will
177 include many cases of zero probabilities in both the forecast and verification data (null cases),
178 which affects results and their interpretation. The verification impacts of null cases are
179 discussed section 3. We also attempted this evaluation using a 10x10 degree box around the
180 verifying TC location, and found that this smaller area did not always encompass the TC-driven

181 waves and highest significant wave height probabilities at longer forecast leads. At these longer
182 leads, the area of high significant wave height probabilities can be both larger and dislocated
183 from the 10x10 degree box around the verifying position. Our evaluation was also limited to
184 TCs with verifying intensities of 35 knot (kt; 1 kt = 0.514 m s^{-1}) or greater intensity, which results
185 in limiting the false alarm rates for both algorithms.

186

187 Although we verify WW3TCOFCL Ensemble probabilities against WW3NAVGEN
188 deterministic model significant wave height analyses (which assimilate altimeter wave heights),
189 we do not attempt verification ensemble runs against buoys and/or altimetry data explicitly,
190 other than anecdotally. These observations have coverage issues that hinder verification of
191 steep gradients and rare events, and can yield misleading results (see Sampson et al. 2013).

192

193 Table 1 provides a summary of the cases used in the verification. Each 20x20 degree
194 verification area represents 400 potential paired forecast and verification points, so the values
195 in Table 1 are effectively 1/400th of the paired forecast points evaluated (minus an estimated
196 10% that verified over land and were removed from verification). Grid differences also
197 accounted for minor differences in the matched pairs over water, 1 or 2 paired forecasts in
198 approximately 10% of the cases. This represents differences of less than 0.1% and is ignored.

199 Summary statistics at the end of the Results Section are provided with significance using
200 a 2-tailed Student's t-test. To remove correlation issues within the data, each 20x20 degree
201 (each with potentially 400 paired forecasts) is treated as a single case. Then the t-tests are
202 provided for the summary statistics –Discrimination Distance, ROC AUC, and Brier Score. No

203 effort is made to account for the effects of serial correlation in the summary data, but the
204 degrees of freedom are conservatively estimated using the number of cases rather than the
205 number of matched pairs (i.e., counting every point in the 20x20 degree box as a case).

206

207 4. Results

208 To demonstrate significant wave height forecasts we present results in three ways. We
209 first present two cases that exemplify our real-time assessment of the differences between
210 WW3TCOFCL Ensemble and WW3NAVGEN Ensemble significant wave height probabilities. We
211 then verify WW3TCOFCL Ensemble and WW3NAVGEN Ensemble against WW3TCOFCL
212 deterministic model significant wave height analyses, and for completeness, against
213 WW3NAVGEN deterministic significant wave height analyses. For objective probabilistic
214 verification statistics generation, we use the Model Evaluation Tools (MET; Development Test
215 Center 2020) grid verification tools. We employ MET parameters Reliability, Likelihood,
216 Calibration, ROC, ROC AUC, and Brier Score to obtain a reasonably complete summary of
217 performance characteristics of each ensemble. Each of these metrics is described in section 4c.

218 a) Typhoon Maria (WP102018)—intensifying to 140 kt

219 To highlight differences in the two algorithms (WW3 run with/without post-processing)
220 in an intensifying TC, we choose the Maria (WP102018). Maria, the eighth named storm of the
221 2018 typhoon season, was a powerful tropical cyclone that affected Guam, the Ryukyu Islands,
222 Taiwan, and East China in early July 2018. Here we examine 96-h forecasts valid July 9, 2018 at
223 00 UTC, initiated on 5 July 00 UTC when the storm was located southeast of Guam and forecast

224 to intensify as it moved toward Okinawa. Figure 2 shows details of the WW3TCOFCL Ensemble
225 (left column) and WW3NAVGEN Ensemble (right column) forecasts of 12-ft seas. Consistent
226 among the TCs inspected (approximately 30 cases) are that the WW3NAVGEN Ensemble input
227 forecast tracks (Fig. 2 top row) and intensities both have reasonably large spread, but that
228 ensemble member intensities tend to be too low, with intensities, unrealistically peaking near
229 70 kt for all members (Fig. 2 second row). In comparison, the WSP tracks and intensities appear
230 to be well-calibrated with individual forecasts encompassing the forecast, and thus provide
231 more realistic wind forcing input to WW3. In the case of Maria, this results in large areas
232 relatively weak wind forcing input to the WW3NAVGEN Ensemble, and much lower 12-ft
233 significant height probabilities when compared to those from the WW3TCOFCL Ensemble (Fig. 2,
234 third row)—the issue is even more pronounced for higher significant wave height thresholds
235 (not shown). These differences are not isolated, but seen throughout the data set, especially for
236 developing TCs.

237

238 b) Hurricane Ileana (EP112018)—maintaining intensity at 40-45 kt

239 The majority of TCs are not forecast to intensify beyond 70 kt. To highlight differences
240 between a weaker TC that is not forecast to intensify, we choose Hurricane Ileana's 48-h
241 forecast valid August 8, 2018 at 00 UTC, initiated on 6 August 00UTC. Ileana was a remarkably
242 small TC and the ninth tropical storm in the East Pacific in 2018 and during its lifecycle tracked
243 parallel to the Mexican coast. At this time, NHC forecasted Ileana to remain weak as it
244 approached the Baja California Peninsula. In this case, the initial intensities used in the

245 WW3NAVGEN Ensemble encapsulate the initial estimate from NHC (Fig. 3, second row). The
246 forecast track (Fig 3, top row) and intensity spreads (Fig. 3, second row) are larger than those
247 produced from the WSP algorithm. The 12-ft seas probabilities forecasts (Fig.3, third row) from
248 WW3TCOFCL Ensemble are still noticeably higher probabilities in the vicinity of the highest
249 observed wave heights (Fig. 3, bottom row). Much of the difference in 12-ft significant wave
250 height probabilities generated from the WW3TCOFCL Ensemble and WW3NAVGEN Ensemble
251 can be explained by larger forecast track spread in the WW3NAVGEN Ensemble input.

252

253 c) Objective Scores

254 Once the analyses are limited to 20x20 degree boxes centered on the TC best track
255 position, the probability forecasts can be inter-compared using standard probability metrics
256 such as Reliability (Fig. 4), Discrimination (Fig. 5), Relative/Receiver Operating Characteristic
257 (ROC; Fig. 6), and summary or derivative metrics such as Discrimination Distance, Area Under
258 ROC Curve, and Brier Score (Fig. 7). Each of these metrics answers a specific question that we
259 discuss below. Again, our evaluation uses MET, which in turn cites Wilks (2011) for most of its
260 statistical algorithms. Results shown here are for a homogeneous data set, meaning that the
261 scores from the two different algorithms can be compared since they are for the same TCs on
262 the same dates. For ground truth we again use analyzed significant wave heights from the
263 WW3TCOFCL deterministic model (Sampson et al. 2013) as these have been shown to have
264 realistic TC structure. We also performed the same tests using WW3NAVGEN deterministic
265 model analyzed significant wave heights for verification, but somewhat surprisingly found

266 consistent results in both statistical analyses for the metrics chosen. Finally, the evaluation was
267 conducted for 0, 1, 2, 3, 4, and 5 day forecasts, but we limit presentation of the Reliability,
268 Discrimination and ROC charts to 1, 3, and 5 days and the results to those using the
269 WW3TCOFCL model deterministic analysis as ground truth for brevity.

270 i) Reliability

271 Reliability determines how well the probabilities compare to observed frequencies. On
272 a Reliability Diagram, perfect reliability is a diagonal (1:1) line from lower left to upper right,
273 biases are indicated by model reliability being below (high bias) and above (low bias) the 1:1
274 line, and forecast confidence is provided by the slope of model reliability relative to the 1:1 line,
275 that is under-confident when the slope is less than and overconfidence when the slope is
276 greater than one (Wilks 2011). Reliability for both 12-ft and 18-ft significant wave height
277 probabilities is shown in Fig. 4. The reliability for WW3TCOFCL Ensemble 12-ft significant wave
278 height appears high biased (over-forecasting in Wilks 2011) throughout. The WW3NAVGEM
279 Ensemble appears to overestimate low probabilities and underestimate higher probabilities in
280 shorter forecast leads (under-confident), and overestimate probabilities like the WW3TCOFCL
281 Ensemble does at longer forecast leads. The number of cases drops precipitously for the 120-h
282 18-ft significant wave height probabilities above 80%, dropping to 400 head-to-head cases or
283 one grid (SH112019 verifying Mar 7 2019 at 12:00 UTC). So the Reliability Diagrams at 120 h for
284 18-ft significant wave height at the highest probability thresholds have few verification cases,
285 reflected in the erratic changes in the reliability.

286 In the case of the WW3NAVGEN Ensemble (under-confident in short-term forecast
287 leads, over-forecasting at longer-term forecast leads), the authors suspect that the ensemble is
288 challenged by resolution in that circulations tend to be too large at longer forecast leads. In the
289 case of WW3TCOFCL Ensemble, the authors suspect several potential issues. The first is that
290 WW3 is likely more appropriately run with 10-minute mean wind speeds since it is developed
291 to use NWP fields. This is in contrast to U.S. official forecast center specified TC winds and wind
292 probability realizations, which are both considered 1-minute wind speed estimates.
293 Operational forecasters use conversion rates such as .93 (Harper et al. 2010) to convert the 1-
294 minute wind speeds to 10-minute wind speeds, and this conversion would likely reduce the
295 high bias. Another potential source of bias is the statistical wind radius model (DRCL; Knaff et
296 al. 2007 and Knaff et al. 2018) used in the wind probabilities. DRCL wind radii become more
297 symmetric as the forecast progresses in time, and these symmetric forecasts could provide
298 unrealistic durations for TC winds. DRCL will never emulate the large symmetry fluctuations
299 seen in nature. A more appropriate treatment of the asymmetries, especially at longer forecast
300 periods, could provide more realistic changes in fetch and duration of winds around TCs.

301 ii) Discrimination

302 Discrimination is the relative frequency with which a forecast can discriminate between
303 events and non-events, where perfect discrimination would entail no overlap between
304 distributions of forecast probabilities for events and non-events. Discrimination Diagrams show
305 these frequencies, where superior discrimination is indicated by separation between the events
306 and non-events. Figure 5 shows discrimination for probabilities from our two algorithms at 1,
307 3, and 5 days. One obvious trend is that the separation between events and non-events

308 becomes smaller as forecast length increases, as seen by the lines of the same color converging
309 towards each other. The ability to discriminate between events and non-events drops with
310 forecast lead time for both algorithms.

311 iii) Discrimination Distance

312 An easier way to visualize and summarize the discrimination is to graph the
313 Discrimination Distance (the difference between the average of the event and non-events) for
314 all forecast leads on one graph (Fig. 7). The Discrimination Distances for the WW3TCOFCL
315 Ensemble are lower than for WW3NAVGEN Ensemble probabilities out to approximately 24 h,
316 then remain approximately 10% higher for the longer leads. Significant differences using a 2-
317 tailed t-test at the 5% level are present at all but the 24-h time period for 12-ft probabilities,
318 and at all but 24-h and 120-h time periods for the 18-ft probabilities. Discrimination Distances
319 for 12-ft are about 10% higher than for 18-ft significant wave heights at all forecast leads,
320 indicating more skill in discrimination of 12-ft significant wave heights. The Discrimination
321 Distances also decay at longer leads, indicating less skill in discrimination between events and
322 non-events at these forecast leads times.

323 iv) ROC

324 ROC is another measure of the ability of the forecast to discriminate between two
325 alternative outcomes, thus measuring resolution. It is not sensitive to bias in the forecast, so
326 says nothing about reliability. A biased forecast may still have good resolution and produce a
327 good ROC curve, which means that it may be possible to improve the forecast through
328 calibration (e.g., correcting the bias). ROC can thus be considered as a measure of potential

329 usefulness (Development Test Center, 2020). A perfect ROC curve follows the y axis from 0 to
330 1, then across the top of the diagram to 1, 1. The ROC degrades for both algorithms as forecast
331 time increases (Fig. 6). This is true for both the 12-ft and 18-ft thresholds. .

332 v) ROC Area Under Curve

333 The area under a ROC Curve (ROC AUC) is a convenient way to summarize how a
334 forecast discriminates between event/non-event (Wilks 2011). Values can theoretically go from
335 0 to 1. A perfect score is 1, describing the area under a curve that passes from x=0, y=0, through
336 x=0, y=1, to x=1, y=1). The ROC AUC for the no-skill diagonal is .5 (the area under a diagonal
337 from x=0, y=0 to x=1, y=1 on a ROC Diagram). As expected, the ROC AUC (Fig. 7) for the
338 WW3TCOFCL Ensemble probabilities is relatively low at analysis time due to the many cold
339 starts in our data set. The WW3TCOFCL Ensemble ROC AUC improves until about the 48-h
340 forecast time, then gradually drops off through 120 h. The WW3NAVGEN Ensemble ROC AUC
341 drops gradually through the forecast and is approximately 15% lower than the WW3TCOFCL
342 Ensemble between 72 and 120 h. Differences in the ROC AUC pass significance tests at all
343 forecast periods except at 48 h for 12-ft, and at 0 h for 18-ft significant wave height. The
344 numbers of cases (each case representing an entire 20x20 degree grid) for this ROC AUC at 48,
345 72, 96, and 120 h are all well below 200, so conclusions on significance tests 18-ft significant
346 wave height should await more cases. Recall that the high bias in the WW3TCOFCL Ensemble is
347 not penalized in either the ROC or the ROC AUC, and that the ROC AUC is only used to
348 discriminate between the event and non-event. It is encouraging that the WW3TCOFCL
349 Ensemble probabilities maintain high ROC AUC out to 120 h since high bias, not depicted in
350 either the ROC or ROC AUC, can be corrected through adjustments in the algorithm.

351 vi) Brier Scores

352 Brier Scores are another standard skill score for probabilistic forecasts, and measure
353 both reliability and resolution (the ability to distinguish an event from a non-event). The Brier
354 Score measures the mean square error of probabilities. Here again we use the WW3TCOFCL
355 deterministic model analyses as ground truth. Brier Scores range from 0 to 1, 0 being a perfect
356 score. Brier Scores for both ensembles evaluated are shown in Fig. 7 and they are within 3% of
357 each other for both 12- and 18-ft thresholds. These generally rise as forecast time increase,
358 indicating skill drops with forecast lead. The uptick in the WW3TCOFCL Ensemble at analysis
359 time is expected as this ensemble was frequently cold started throughout the testing period
360 and the WW3TCOFCL Ensemble (and its input) has little spread at analysis time. The
361 WW3NAVGEN Ensemble probabilities have slightly lower Brier Scores than the WW3TCOFCL
362 Ensemble probabilities at all forecast times for the 12-ft significant wave height threshold, and
363 scores from the two algorithms are within 3% of each other. Differences for 12-ft probabilities
364 are significant at all forecast periods. Brier Scores for 18-ft significant wave height thresholds
365 are within 1% of each other with the WW3NAVGEN Ensemble scoring lower (better).
366 Differences are significant at 24 and 96 h, but just barely pass significance tests. In the case
367 shown in Fig. 2, the Brier Score for WW3NAVGEN Ensemble (0.082098) is lower than for
368 WW3TCOFCL Ensemble (0.13089). This may seem counterintuitive as the WW3TCOFCL
369 Ensemble probabilities “look” to capture the 12-ft significant wave heights in the WW3TCOFCL
370 deterministic model analysis from 96 hours later. But upon further inspection (Table 2), the
371 distribution of probability forecasts for WW3NAVGEN Ensemble is skewed to lower
372 probabilities so that it scores much higher in the large number of non-events than the

373 WW3TCOFCL Ensemble probabilities for this case. The Brier score becomes inadequate for
374 very rare (or very frequent) events because it does not sufficiently discriminate between small
375 changes in forecast that are significant for rare events (Benedetti 2010). Thus, Brier Score
376 unfairly penalizes extremely rare (or common) event forecasts and can actually leads to
377 conclusions that disagree with our intuition (Jewson 2008), such as indicating that the
378 WW3NAVGEN Ensemble outperforms the WW3TCOFCL Ensemble for the case in Fig. 2. The
379 Brier Scores are still useful in our evaluation as they confirm high bias in the WW3TCOFCL
380 Ensemble that, if corrected, could decrease the Brier Scores. However, tuning specifically to
381 Brier Scores is not advised as that could result in undesired reduction in extreme event
382 prediction (described as under-confident in Wilks 2011). An analog to this would be tuning a TC
383 wind intensity consensus (e.g., see Sampson et al. 2008) to minimize mean forecast error when
384 the most impactful errors are associated with rare and difficult to forecast rapid intensification
385 events.

386

387 5. Conclusions and future work

388 A post-processing algorithm for insertion of real-time operational TC surface wind
389 forecasts into a .25x.25 degree global 20-member ensemble surface wind field is described.
390 This algorithm was run twice a day (at 00 and 12 UTC) for approximately one year and included
391 active TCs from all basins. Each set of post-processed wind fields was then used as wind input
392 to WW3 in order to generate a 20-member ensemble of forecasted significant wave height

393 fields out to 5 days. The resultant significant wave height fields from each ensemble member
394 were then compiled to create significant wave height probabilities on a 1x1 degree global grid.

395 Evaluation was performed using 20x20 degree boxes around verifying positions of the
396 TCs at each forecast day using the MET statistics package. Both WW3NAVGEN and
397 WW3TCOFCL deterministic model analyses were used as ground truth for evaluation of the
398 probabilities and little difference was found between evaluations with the two ground truth
399 datasets. Case studies indicated large discrepancies frequently existed between input winds
400 from the two algorithms. NAVGEN Ensemble tracks and intensities generally had large
401 spreads, and certainly larger than those generated by the WSP algorithm that are used in the
402 WW3TCOFCL Ensemble for weaker TCs. WW3NAVGEN Ensemble input intensities were
403 generally low-biased for intense TCs as the NAVGEN Ensemble resolution was challenged to
404 represent steep wind gradients in relatively small TCs. Large discrepancies also existed
405 between significant wave height probabilities generated by each of the ensemble forecasts.
406 The WW3NAVGEN Ensemble significant wave height probabilities tended to be more
407 widespread and lower in magnitude than those from the WW3TCOFCL Ensemble.

408 In objective evaluation, Reliability Diagrams show that WW3NAVGEN Ensemble
409 overestimated low probabilities and underestimated higher probabilities in short-range
410 forecasts, then generally overestimated probabilities by 5 days. WW3TCOFCL Ensemble
411 generally overestimated all probabilities throughout the entire forecast. Brier Scores for
412 WW3NAVGEN Ensemble were a few percent better than WW3TCOFCL Ensemble at 12-ft
413 significant wave height forecasting at all forecast lengths, but inspection of individual cases
414 indicated that those scores were heavily influenced by forecasts of very low probability for non-

415 events (no 12-ft or 18-ft significant wave height in ground truth). Brier Scores for 18-ft
416 significant wave height were within about 1% at all forecast lengths. ROC curves and ROC AUC
417 indicated that discrimination between events and non-events degrades with forecast period for
418 both sets of probabilities, but that WW3TCOFCL Ensemble forecast generally appeared better
419 at discriminating events from non-events beyond 24 h. These results are confirmed by the
420 Discrimination Diagrams, Discrimination Distances, and significance tests for Discrimination
421 Distances.

422 The WW3TCOFCL Ensemble high bias noted in the Reliability Diagrams is likely
423 correctable. Whether by converting the WW3TCOFCL Ensemble input 1-minute to 10-minute
424 mean winds that are more representative of NWP model winds, by replacing the Wind Radii
425 CLIPER Model (DRCL) with more realistic wind distribution realizations, or by applying some
426 combination of the above, the high bias can be addressed. Also, the validation package
427 developed in this work could be modified to validate whether changes in algorithms upstream
428 of the WW3 ensembles (e.g., the WSP algorithm and the NAVGEM Ensemble) adversely affect
429 the significant wave height probabilities. Operational forecasts are certain to improve in the
430 future through use of new sensors, improved NWP representation of the vortex, and more
431 advanced post-processing in the wind probability algorithm — all of which can affect these
432 ensembles. Construction of TC-specific significant wave height probability verification was
433 time-consuming, but the process to achieve this is in place and could be used as is or improved
434 upon to validate TC-specific wave probabilities in the future. And addition of Object-Based
435 Diagnostic Evaluation (MODE) verification available in MET may compliment the evaluation
436 done within this work as it follows features (e.g., TCs) and reports statistics different than

437 those here when comparing the features. That evaluation would be similar to and hopefully
438 more rigorous than the 12-ft sea radii evaluation against operational NHC estimates as done in
439 Sampson et al. (2016).

440

441 Acknowledgments: This effort is dedicated to our late friend and colleague Paul Wittmann,
442 WAVEWATCH expert and all around great person. Publication of this work was graciously
443 funded by the Office of Naval Research, Program Elements 0602435N and 0603207N and
444 NOAA/NESDIS base funding. We would like to thank Chuck Skupniewicz at Fleet Numerical
445 Meteorology and Oceanography Center, who provided both encouragement and funding to
446 keep the WW3TCOFCL Ensemble project going. Thanks also to Chris Landsea at the National
447 Hurricane Center and his advocacy for this type of effort - it is greatly appreciated. We also
448 thank John Gotway and the entire MET Team, without their help and software this evaluation
449 would be significantly more difficult. Finally, kudos to Jim Hansen for suggesting expanding the
450 deterministic WW3TCOFCL model to generate probabilities for sortie decisions. The views,
451 opinions, and findings contained in this report are those of the authors and should not be
452 construed as an official National Oceanic and Atmospheric Administration or U.S. Government
453 position, policy, or decision.

454

455 Data Availability: Both sets of ensemble significant wave height probabilities have been
456 archived and are available on request; however, a non-disclosure agreement public release
457 approval may be required to provide data.

458

459

460

461 8. References

462 Aijaz, S., J. D. Kepert, H. Ye, Z. Huang, and A. Hawksford, 2019: Bias correction of tropical
463 cyclone parameters in the ECMWF Ensemble Prediction System in Australia. *Mon. Wea.
464 Rev.*, **147**, 4261–4285, doi: <https://doi.org/10.1175/MWR-D-18-0377.1>

465 Benedetti, R., 2010: Scoring rules for forecast verification. *Mon. Wea. Rev.*, **138**, 203–211, doi:
466 <https://doi.org/10.1175/2009MWR2945.1>

467 Cummings, J. A., and P. Wittmann, 2009: Navy implements data assimilation capability for its
468 wave forecasting model. *JCSDA Quarterly*, No. 28, Joint Center for Satellite Data Assimilation,
469 Camp Springs, MD, 2–3. [Available online

470 at <https://static1.squarespace.com/static/5bad1a12c2ff616821035c9f/t/5d1bc190f87d390001>
471 d7f83e/1562100113337/200909JCSDAQuarterly.pdf]. Accessed 6/10/2021.

472 DeMaria, M., J. A. Knaff, M. Brennan, D. Brown, C. Lauer, R. T. DeMaria, A. Schumacher, R. D.
473 Knabb, D. P. Roberts, C. R. Sampson, P. Santos, D. Sharp, K. A. Winters, 2013: Operational
474 tropical cyclone wind speed probabilities part I: Recent model improvements and verification

475 *Wear, Forecasting*, **28**, 586–602, doi: <http://dx.doi.org/10.1175/WAF-D-12-00116.1>

476 Development Testbed Center, 2020: Model Evaluation Tools (MET) [available on line at <http://www.ncei.noaa.gov/products/computational-models/meteorological-model-evaluation-tools/meteorological-model-evaluation-tools-met>].

477 <https://dtcenter.org/community-code/model-evaluation-tools-met>] Accessed 6/10/2021.

478 Frank, W. M., 1977: The structure and energetics of the tropical cyclone. I: Storm structure.

479 *Mon. Wea. Rev.*, **105**, 1119–1135, doi:[10.1175/1520-0493\(1977\)105<1119:TSAEOT>2.0.CO;2](https://doi.org/10.1175/1520-0493(1977)105<1119:TSAEOT>2.0.CO;2)

480 Harper, B. A., J. D. Kepert, and J. D. Ginger, 2010: Guidelines for converting between various

481 wind averaging periods in tropical cyclone conditions, World Meteorological Society, 64 pp.

482 [Available online at

483 https://library.wmo.int/index.php?lvl=notice_display&id=135#.X6gp8mR7mUk] Accessed

484 6/10/2021.

485 Jewson, S., cited. 2008: The problem with the Brier score. [arXiv:physics/0401046v1](https://arxiv.org/abs/physics/0401046v1) [physics.ao-

486 ph]. [Available online at [http://arxiv.org/abs/physics/0401046v1](https://arxiv.org/abs/physics/0401046v1)] Accessed 6/10/2021.

487 Klotz, B. W., and D. S. Nolan, 2019: SFMR Surface wind undersampling over the tropical cyclone

488 life cycle. *Mon. Wea. Rev.*, **147**, 247–268, doi: <https://doi.org/10.1175/MWR-D-18-0296.1>

489 Knaff, J. A., C. R. Sampson, M. DeMaria, T. P. Marchok, J. M. Gross, and C. J. McAdie, 2007b:

490 Statistical tropical cyclone wind radii prediction using climatology and persistence. *Wea.*

491 *Forecasting*, **22**, 781–791, doi: <https://doi.org/10.1175/WAF1026.1>

492 Knaff, J. A., C. R. Sampson, and K. D. Musgrave, 2018: Statistical tropical cyclone wind radii

493 prediction using climatology and persistence: Updates for the western North Pacific. *Wea.*

494 *Forecasting*, **33**, 1093–1098, doi: <https://doi.org/10.1175/WAF-D-18-0027.1>

495 Marchok, T. P., 2002: How the NCEP Tropical Cyclone Tracker works. *Preprints, 25th Conf. on*

496 *Hurricanes and Tropical Meteorology*, San Diego, CA, Amer. Meteor. Soc., P1.13. [Available

497 online at <http://ams.confex.com/ams/pdffiles/37628.pdf>] Accessed 6/10/2021.

498 Meissner, T., L Ricciardulli, and F.J. Wentz, 2017: Capability of the SMAP Mission to measure
499 ocean surface winds in storms, *Bull. Amer. Meteor. Soc.*, **98**, 1660-1677, doi: [10.1175/BAMS-D-16-0052.1](https://doi.org/10.1175/BAMS-D-16-0052.1)

501 Mouche, A., B. Chapron, J. Knaff, Y. L. Zhao, B. Zhang, and C. Combot, 2019: Copolarized and
502 cross-polarized SAR measurements for high-resolution description of major hurricane wind
503 structures: Application to Irma Category 5 hurricane, *J Geophys Res-Oceans*, **124**, 3905–3922.

504 NCEP, 2020: WAVEWATCH III® Model. [Available on line at
505 <https://polar.ncep.noaa.gov/waves/wavewatch/>] Accessed 12/06/2020.

506 O'Reilly, W. C., and R. T. Guza, 1993: A comparison of two spectral wave models in the Southern
507 California Bight. *Coastal Eng.*, **19**, 263–282.

508 Reul, N., and co-authors (2017): A new generation of tropical cyclone size measurements from
509 space, *Bull. Amer. Meteorol. Soc.*, **98**, 2367–2386, doi: [10.1175/BAMS-D-15-00291.1](https://doi.org/10.1175/BAMS-D-15-00291.1)

510 Sampson, C. R., J. L. Franklin, J. A. Knaff, and M. DeMaria, 2008: Experiments with a simple
511 tropical cyclone intensity consensus. *Wea. Forecasting*, **23**, 304–312.

512 Sampson, C. R., J. S. Goerss, J. A. Knaff, B. R. Strahl, E. M. Fukada, and E. A. Serra, 2018: Tropical
513 Cyclone Gale Wind Radii Estimates, Forecasts, and Error Forecasts for the Western North
514 Pacific, *Wea. Forecasting*, **33**, 1081–1092.

515 Sampson, C. R., P. A. Wittmann, E. A. Serra, H. L. Tolman, J. Schauer, and T. Marchok, 2013:
516 Evaluation of wave forecasts consistent with tropical cyclone wind forecasts, *Wea. Forecasting*,
517 **28**, 287–294. doi: <http://dx.doi.org/10.1175/WAF-D-12-00060.1>

518 Sampson, C. R., J. Hansen, P. A. Wittmann, J. A. Knaff, and A. Schumacher, 2016: Wave
519 probabilities consistent with official tropical cyclone forecasts, *Wea. Forecasting*, **31**, 2035–
520 2045, doi: [10.1175/WAF-D-15-0093.1](https://doi.org/10.1175/WAF-D-15-0093.1).

521 Tolman, H. L., 1991: A third-generation model for wind waves on slowly varying, unsteady, and
522 inhomogeneous depths and currents. *J. Phys. Oceanogr.*, **21**, 782–797.

523 Tolman, H. L., B. Balasubramaniyan, L. D. Burroughs, D. V. Chalikov, Y. Y. Chao, H. S. Chen, and
524 V. M. Gerald, 2002: Development and implementation of wind generated ocean surface wave
525 models at NCEP. *Wea. Forecasting*, **17**, 311–333.

526 Tolman, H. L., J. G. M. Alves, and Y. Y. Chao, 2005: Operational forecasting of wind-generated
527 waves by Hurricane Isabel at NCEP. *Wea. Forecasting*, **20**, 544–557, doi:
528 <https://doi.org/10.1175/WAF852.1>

529 Wilks, D., 2011: Statistical methods in the atmospheric sciences, Elsevier, San Diego. 627 pp.

530 Zieger, S., D. Greenslade, J.D. Kepert, 2018: Wave ensemble forecast system for tropical
531 cyclones in the Australian region. *Ocean Dynamics* **68**, 603–625, doi: [10.1007/s10236-018-1145-9](https://doi.org/10.1007/s10236-018-1145-9)

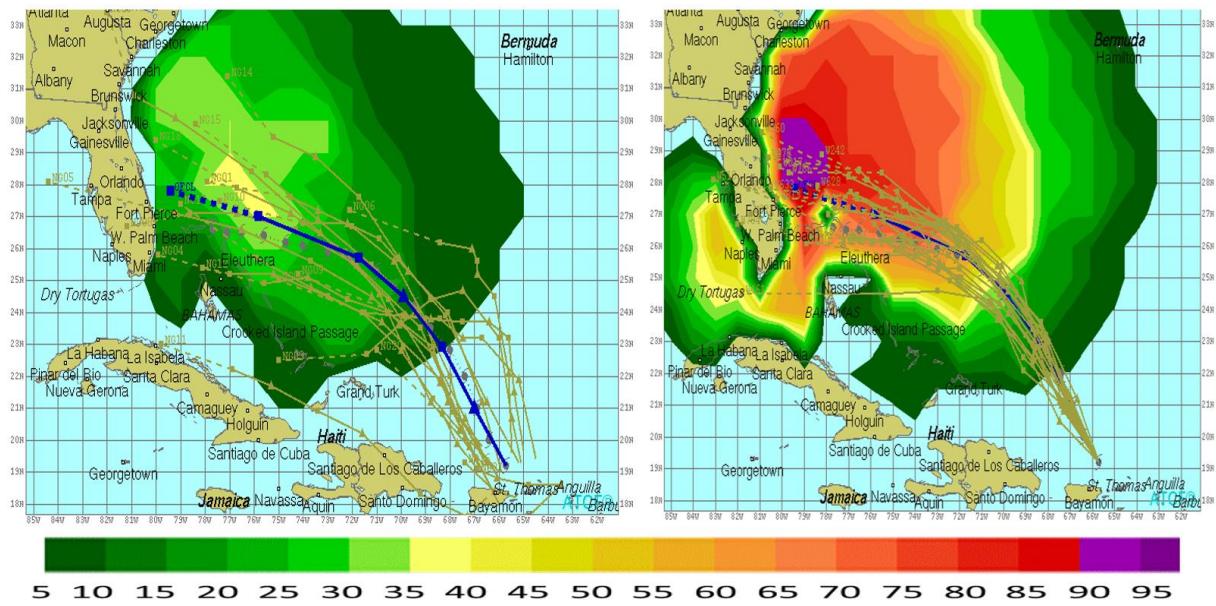
533

534 Table 1. Numbers of WW3TCOFCL Ensemble and WW3NAVGEN Ensemble cases (each being a
 535 20x20 grid) gathered from real-time execution from May 26, 2018 00:00 UTC to March 18, 2019
 536 00:00 UTC with 84 TCs occurring around the world during that period. Each 12-ft and 18-ft case
 537 required to have both ensemble forecasts and verifying WW3TCOFCL deterministic model
 538 analysis.

Tau	0	24	48	72	96	120
12-ft	347	319	261	214	155	112
18-ft	347	319	261	214	155	112

539

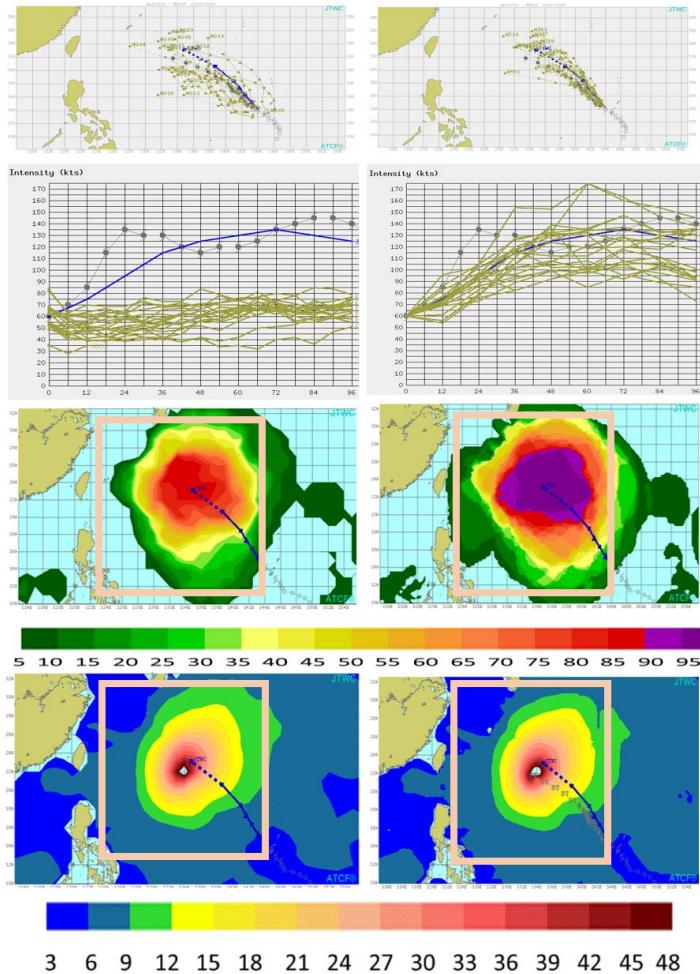
540 Table 2. Contingency Table for WW3NAVGEN Ensemble (left) and WW3TCOFCL Ensemble
 541 (right) greater than 12-ft significant wave height probabilities for the 96-h forecast case shown
 542 in Figure 2. Observed Yes and Observed No for the 20x20 degree grid encompassing the
 543 verifying TC position in Figure 2.


544

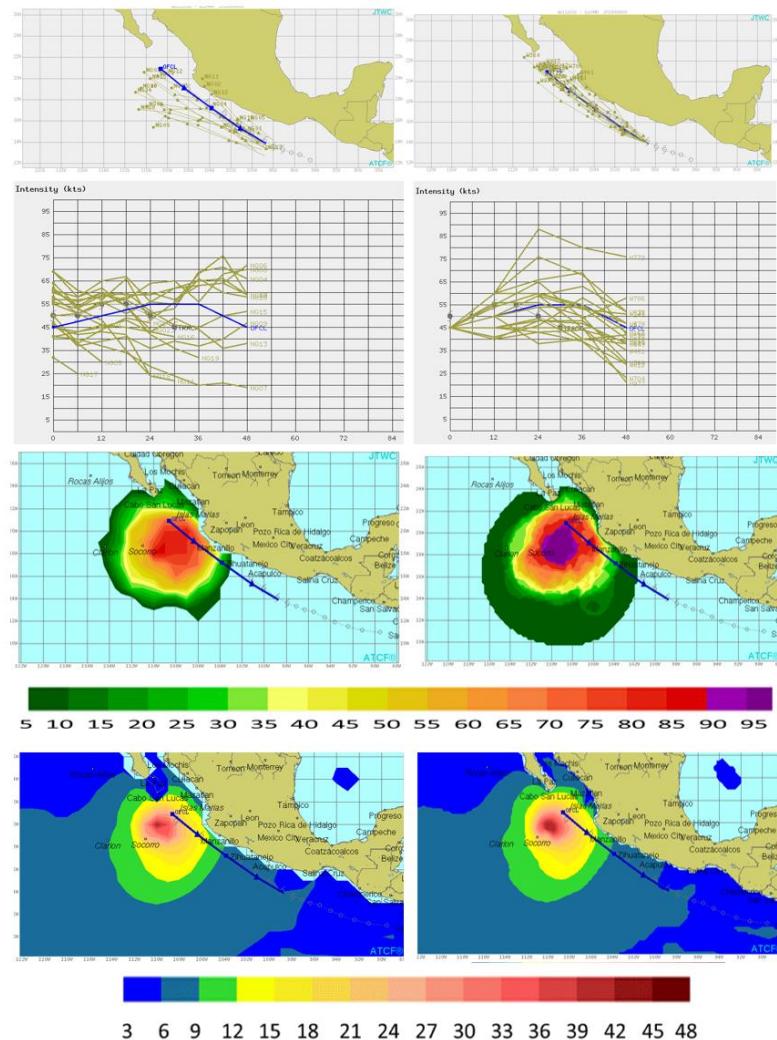
Prob	WW3NAVGEN Ensemble		WW3TCOFCL Ensemble	
	Matched Pairs		Matched Pairs	
	Ob Yes	Ob No	Ob Yes	Ob No
0.05	0	82	0	56
0.15	0	58	0	37
0.25	0	51	0	38
0.35	0	42	0	37
0.45	10	32	1	33
0.55	16	18	1	35
0.65	14	1	5	29
0.75	28	2	14	12
0.85	32	0	15	5
0.95	14	0	78	2

Table 3. Numbers of cases for Reliability, Discrimination and ROC shown in Figures 4-6.

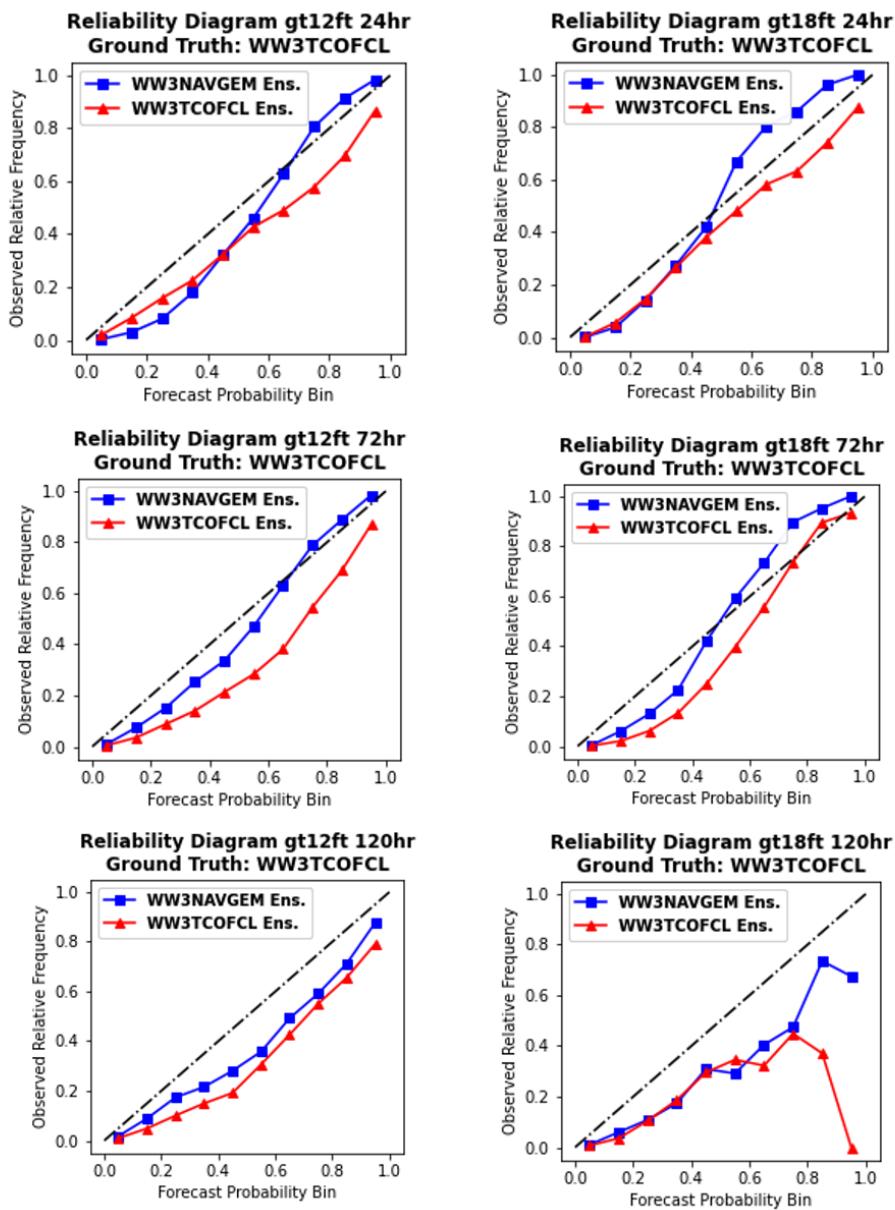
554


WW3NAVGEN Ensemble			WW3TCOFCL Ensemble		WW3NAVGEN Ensemble		WW3TCOFCL Ensemble	
Prob	24h 12ft		24h 12ft		24h 18ft		24h 18ft	
	Ob Yes	Ob No	Ob Yes	Ob No	Ob Yes	Ob No	Ob Yes	Ob No
0.05	102	76240	1326	79715	59	99054	169	99583
0.15	169	7871	565	6578	129	3689	193	3299
0.25	319	4397	609	3330	246	1804	267	1432
0.35	517	3087	596	2083	344	876	306	747
0.45	813	2093	744	1429	412	560	335	513
0.55	1049	1499	870	1058	432	238	323	330
0.65	1484	923	960	799	428	119	384	235
0.75	1821	461	1082	671	392	53	329	165
0.85	2189	204	1357	560	353	21	355	89
0.95	5363	64	5717	645	430	0	564	46
72h 12ft			72h 12ft		72h 18ft		72h 18ft	
Prob	Ob Yes	Ob No	Ob Yes	Ob No	Ob Yes	Ob No	Ob Yes	Ob No
0.05	440	39933	134	28743	326	59769	123	52648
0.15	622	9051	278	11742	332	5526	140	8876
0.25	818	4929	548	7149	324	2156	216	3807
0.35	907	3019	661	4478	314	1132	320	1995
0.45	983	2031	798	3265	365	620	469	1259
0.55	1048	1324	878	2604	387	363	520	720
0.65	1261	751	1213	1631	347	170	477	336
0.75	1362	450	1498	1224	307	41	371	120
0.85	1463	252	1782	680	118	6	188	33
0.95	1934	71	3048	309	46	0	42	3
120h 12ft			120h 12ft		120h 18ft		120h 18ft	
Prob	Ob Yes	Ob No	Ob Yes	Ob No	Ob Yes	Ob No	Ob Yes	Ob No
0.05	438	20507	253	14547	316	30250	212	27093
0.15	603	4695	327	5347	298	3549	229	5250
0.25	542	2512	369	4099	208	1494	280	2306
0.35	457	1750	390	2803	189	879	261	1184
0.45	427	1187	560	2200	213	579	244	743
0.55	522	839	744	1481	147	313	153	390
0.65	557	648	650	985	95	195	118	349
0.75	688	438	819	790	61	98	78	118
0.85	621	216	784	408	61	42	26	71
0.95	1149	217	1108	354	13	13	0	23

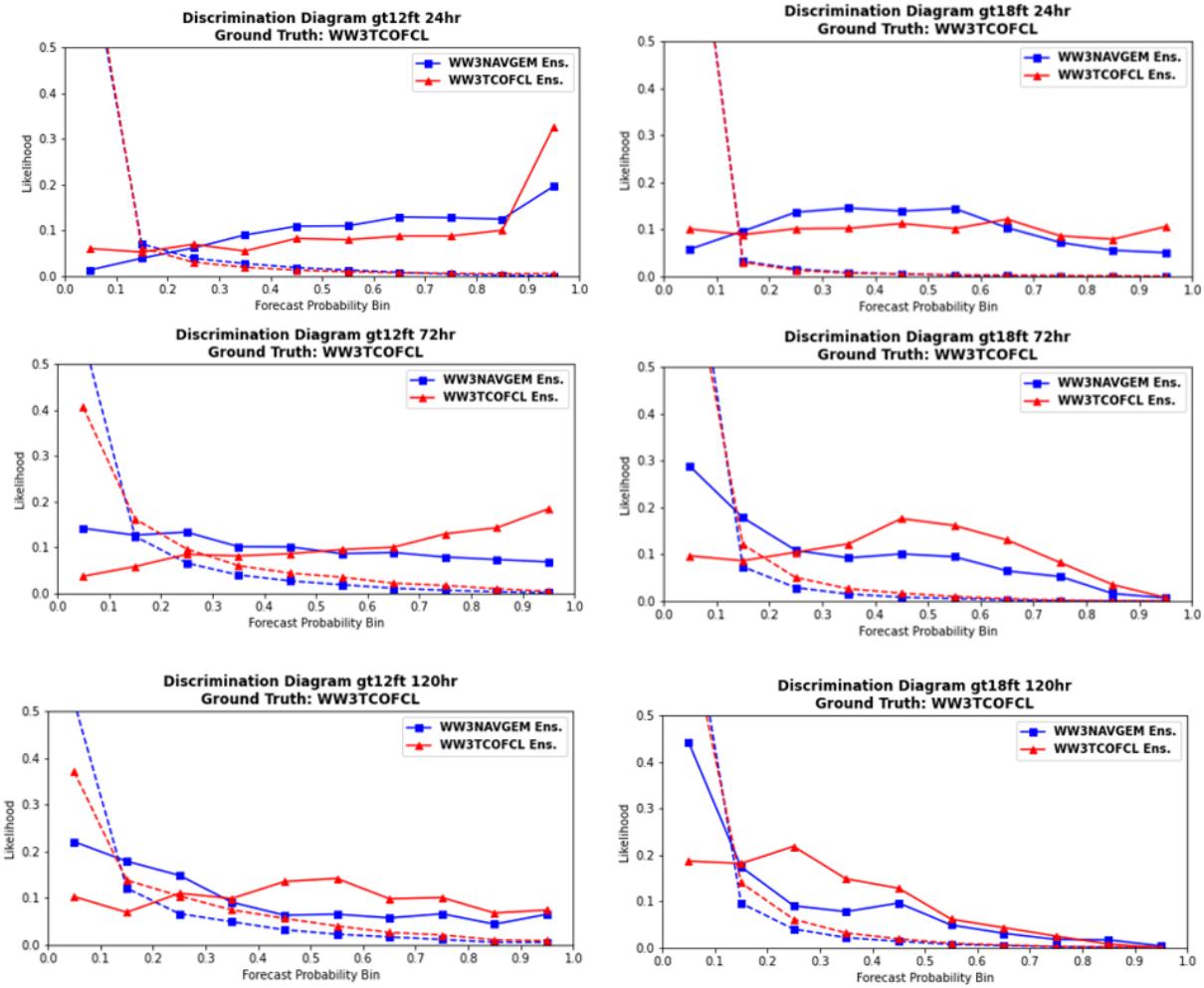
555


556 Figure 1. (left) WW3NAVGEN Ensemble and (right) WW3TCOFCL Ensemble 96-h forecast 12-ft
 557 sig wave ht probabilities for Dorian (AL052019) on Aug 29, 2019 at 00UTC. National Hurricane
 558 Center forecast track (blue) is shown for reference. Also, (right) NAVGEN Ensemble TC tracks
 559 and (right) wind probability realizations generated by the U.S. TC forecast center wind
 560 probabilities (brown) included. Probability (%) colorbar is shown at the bottom.

561

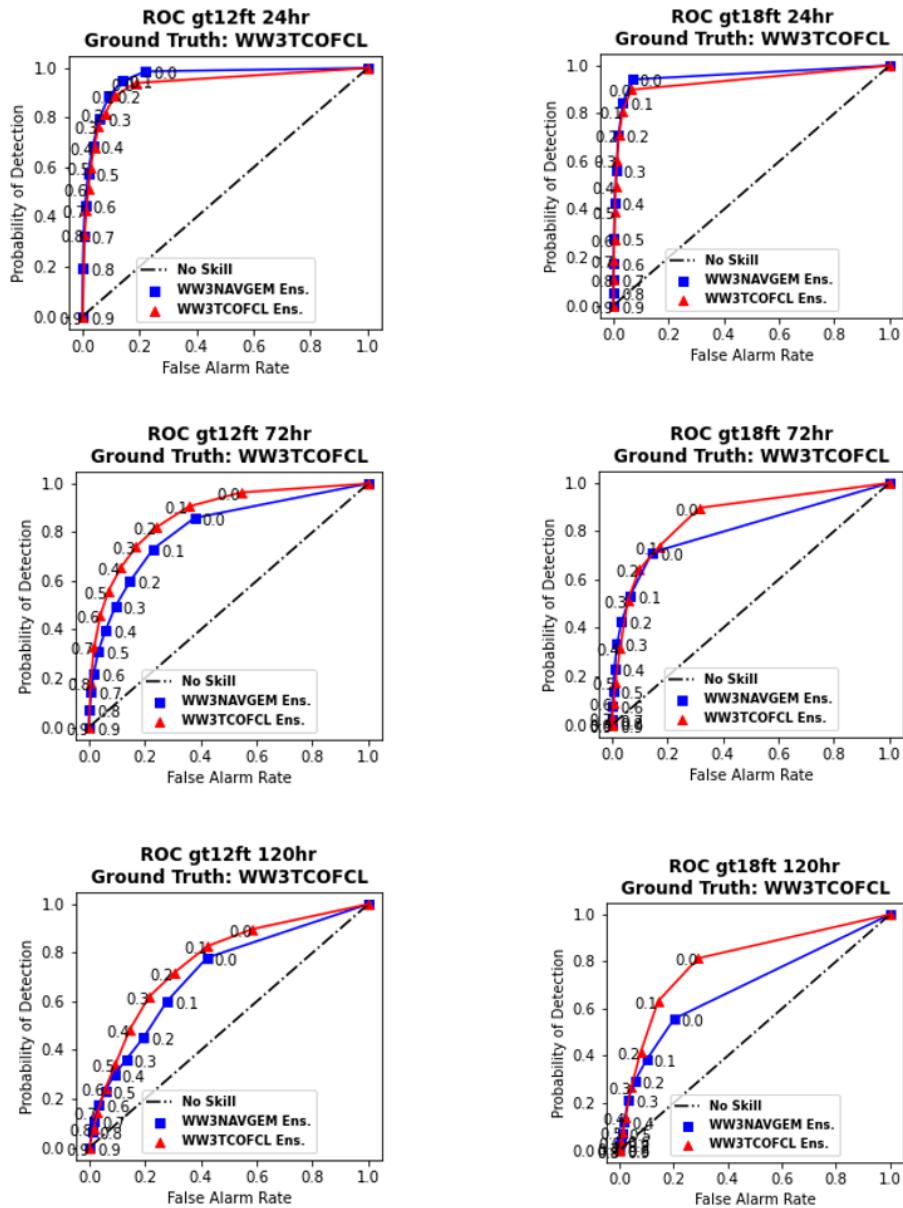

562

563 Figure 2. (left) WW3NAVGEN Ensemble and (right) WW3TCOFCL Ensemble. Input 96-h
 564 forecast tracks (top row), input forecast and verifying intensities (brown lines and black
 565 typhoon symbols, second row), 96-h forecast 12-ft sig wave ht probabilities (third row) and
 566 verifying significant wave height (ft) analyses (fourth row) for WW3NAVGEN deterministic
 567 model (left) and WW3TCOFCL deterministic model (right). Forecasts and analyses valid July 9,
 568 2018 at 00 UTC for Maria (WP102018). Significant wave heights for this case are above the end
 569 of the color bar (48 ft). Joint Typhoon Warning Center forecast track and intensity (blue) is
 570 shown for reference. Verifying track labeled “ST” for Super Typhoon is shown (brown) in
 571 bottom right panel.



572

573 Figure 3. (left) WW3NAVGEN Ensemble and (right) WW3TCOFCL Ensemble. Input 96-h
 574 forecast tracks (top row), input forecast and verifying intensities (brown lines and black
 575 typhoon symbols, second row), 96-h forecast 12-ft sig wave ht probabilities (third row)
 576 and verifying significant wave height (ft) analyses (fourth row) for WW3NAVGEN
 577 deterministic model (left) and WW3TCOFCL deterministic model (right). Forecasts and
 578 analyses for Ileana (EP112018) 48-h forecast valid August 8, 2018 at 00 UTC. Significant
 579 wave heights for this case are above the end of the color bar (48 ft). National Hurricane
 580 Center forecast track and intensity (blue) is shown for reference.


583 Figure 4. Reliability Diagrams for WW3TCOFCL Ensemble and WW3NAVGENM Ensemble 12-ft
 584 (left) and 18-ft significant wave height (right) with WW3TCOFCL deterministic model analysis
 585 employed as ground truth. Sequence progresses from (top) 24-h to (middle) 72-h to (bottom)
 586 120-h forecast. See Table 3 for numbers of head-to-head cases. Dashed lines represent perfect
 587 reliability.

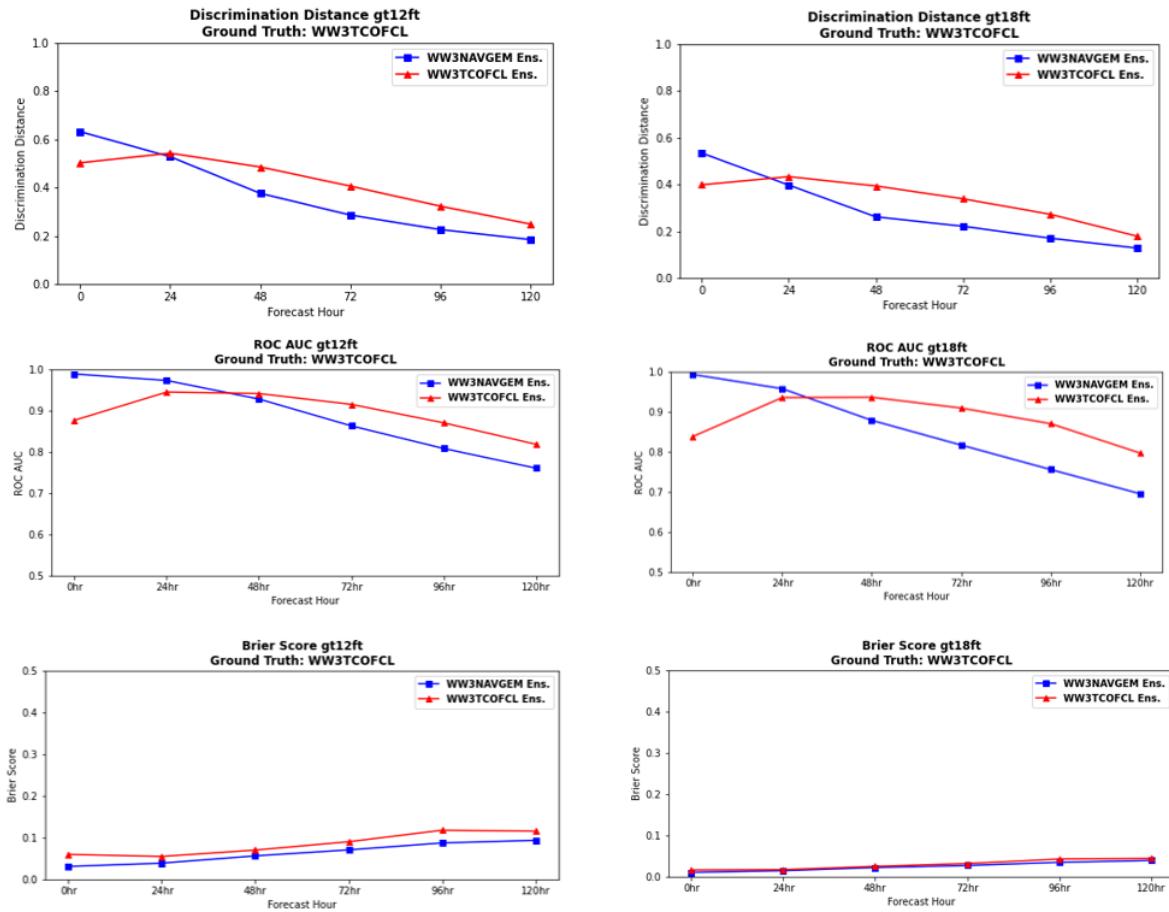
588

589 Figure 5. Discrimination Diagrams for WW3TCOFCL Ensemble and WW3NAVGEN Ensemble 12-
 590 ft (left) and 18-ft significant wave height (right) with WW3TCOFCL deterministic model analysis
 591 employed as ground truth. Solid lines indicate Observed Yes, dashed lines indicate Observed
 592 No distributions. Sequence progresses from (top) 24-h to (middle) 72-h to (bottom) 120-h
 593 forecast. See Table 3 for numbers of head-to-head cases.

594

595

596 Figure 6. ROC Diagrams for WW3NAVGEM Ensemble (left) and WW3TCOFCL Ensemble (right)


597 with WW3TCOFCL deterministic model analysis employed as ground truth. Sequence

598 progresses from (top) 24-h to (middle) 72-h to (bottom) 120-h forecast. Dashed line indicates

599 no skill. See Table 3 for numbers of head-to-head cases.

600

601

602

603 Figure 7. Discrimination Distances (top), ROC AUC (middle), and Brier Scores (bottom) for
 604 WW3TCOFCL Ensemble and WW3NAVGEN Ensemble. 12-ft (left) and 18-ft significant wave
 605 height (right) shown with WW3TCOFCL deterministic model analysis employed as ground truth.
 606 Sequence progresses from (top) 24-h to (middle) 72-h to (bottom) 120-h forecast. See Table 3
 607 for numbers of head-to-head cases.

608