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1. Introduction

Current and new satellite missions provide a wealth of information to improve our
understanding of weather, climate, ocean and the Earth system in general. This study is
motivated by the needs of new satellite missions to undergo all necessary preparations well
before the satellite launch in order to make sure that the observations will be successfully used
as soon as they become available. Data assimilation studies, such as this one, are being
employed to prepare methodologies capable of addressing the challenges of the new satellite
missions. These methodologies should be able to effectively assimilate the new satellite
observations and quantify the information content of the assimilated data. This study focuses
on the data assimilation needs of the next-generation series of Geostationary Operational
Environmental Satellite (GOES-R) mission, currently scheduled for launch in the year 2015.
Our objective is to explore the information content and further improve capabilities of the
current state-of-the-art data assimilation methods in order to extract maximum information
from the GOES-R data, especially in cloudy scenes.

Data assimilation methods have been successfully used to assimilate various satellite
observations in order to improve weather, climate, ocean, hydrological, and ecological
forecasts over several decades (L’Ecuyer et al. 2006; Reichle 2007; Carton and Giese 2008;
Hollingsworth et al. 2008; Jung et al. 2008; Keppenne et al. 2008; and Migliorini et al. 2008
are some recent examples). It is commonly accepted that satellite and other remote sensing
observations are a major source of information for today’s geophysical models due to wide
spatial and high temporal coverage as compared to the non-remote sensing (the so-called
conventional) observations. Current state-of-the-art data assimilation methods typically
assimilate satellite radiances or brightness temperatures, rather than derived model state
parameters (retrievals). This is mainly because the observation errors of the
radiances/brightness temperatures are better known (and are typically less biased) than the
observation errors of the retrievals.

One of the most difficult challenges of satellite data assimilation is assimilation of
satellite radiances in cloudy conditions. Some of the major difficulties arise from the
nonlinear and often discontinuous character of modeled cloud microphysical processes and
from largely unknown forecast error covariances of these processes. Because of these and
many other difficulties, the operational weather centers have been assimilating clear-sky (or
cloud cleared) radiances for decades, thus discarding important information about clouds and
precipitation, as well as other atmospheric variables, contained in the cloudy visible, infrared
and microwave radiances (more about the importance of assimilation of cloudy radiances can
be found, for example, in Andersson et al. 2005 and Errico et al. 2007). Nevertheless, cloudy
satellite retrievals can also bring important information about precipitation and clouds, as
demonstrated in the recent studies by Hou and Zhang (2007) and Lin et al. (2007), where the
Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) and Special Sensor
Microwave Imager (SSM/I) tropical rainfall observations were assimilated.

Thanks to advancements in numerical modeling and data assimilation methods,
assimilation of cloudy radiances has advanced significantly in the last decade, especially in
the atmospheric data assimilation applications. In a study by Chevallier et al. (2004) cloud-
affected satellite infrared radiances were successfully assimilated using a variational data
assimilation method. They pointed out that for some cloud-affected channels of the
METEOSAT and Atmospheric Infrared Sounder (AIRS) instruments, the linearity assumption
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might still be valid, thus these channels were easier to assimilate. In Vukicevic et al. (2004,
2006) assimilation of the GOES imager brightness temperatures into a cloud-resolving model
was successfully performed, indicating clear benefits in improved cloud analyses and short-
term forecasts. It is important to note that the 4-dimensional variational (4D-Var) data
assimilation approach used in Vukicevic et al. (2004, 2006) involved an iterative
minimization and nonlinear updates of the cloud state variables in fine spatial and temporal
resolution, which was helpful to alleviate some of the difficulties due to nonlinearities of the
cloud microphysical processes. In Bauer et al. (2006a, b) the approach called 1D-Var+4D-Var
was introduced for assimilation of precipitation-affected microwave radiances, which was also
adopted for operational application at the European Centre for Medium-Range Weather
Forecasts (ECMWF). The two-step approach, where satellite radiances are assimilated by the
nonlinear 1D-Var step to produce increments of total column water vapor, and then these
increments are assimilated by the linear (so-called incremental) 4D-Var step, has proven
better in handling nonlinearities than the incremental 4D-Var approach alone. In Weng et al.
(2007) rain-affected satellite microwave radiances from the Advanced Microwave Sounding
Unit (AMSU) and the Advanced Microwave Scanning Radiometer (AMSR-E) are assimilated
to improve hurricane vortex analysis. They used an approach called hybrid variational
(HVAR) scheme, which is similar to the ECMWF 1D-Var+4D-Var approach; however, they
employed a different model, the fifth-generation Pennsylvania State University—National
Center for Atmospheric Research Mesoscale Model (MMS5) and its adjoint (Zou et al. 1998;
Zou and Xiao 2000). The data assimilation results indicated improved, more detailed,
structures for the hurricane warm core at the upper troposphere and enhanced lower-level
wind speed and upper-level divergence, thus highlighting the importance of assimilation of
cloudy satellite radiances.

Novel, ensemble-based, data assimilation methods hold a potential to overcome some
of the difficulties of cloud and precipitation assimilation, especially because of the use of
flow-dependent forecast error covariances and an improved treatment of nonlinearities (due to
not using tangent linear and adjoint models). However, applications of the ensemble-based
data assimilation methods to remote sensing observations in general are still rare, and the
experience with assimilation of cloudy satellite radiances is, to our knowledge, non-existent.
Nevertheless, the potential of these methods to further improve the analysis and forecast of
clouds and precipitation is evident from the currently available studies (e.g., Liu et al. 2008;
Meng and Zhang 2008; Whitaker et al. 2008; Aksoy et al. 2009), which were performed using
conventional and/or some remote sensing observations. Therefore, further exploring the
ensemble data assimilation methods in cloud and precipitation assimilation should be well
worth the effort.

In this study, we report the results of a pilot study, performed to evaluate the potential
of the ensemble data assimilation methods to extract maximum information from the future
GOES-R radiance observations in cloudy scenes. Through the use of information measures
based on the flow-dependent forecast error covariance matrix, we define when and where the
observed information is needed the most. This is in the areas where the flow-dependent
forecast uncertainty is the largest. We focus on the impact of the observations from the
Advanced Baseline Imager (ABI), an instrument that will have significant improvements upon
the current GOES imager with more spectral bands, higher spatial and temporal resolution,
better navigation, and more accurate calibration (Schmit et al. 2005). It will also have
improved temporal and spatial resolution relative to those of the GOES-13/O/P sounders
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(Schmit et al. 2008). Before using observed radiances, synthetic ABI radiances at 10.35 um
were assimilated as a first step in this study. The 10.35 um channel was selected because it is
a clean window channel, expected to be sensitive to the hydrometeors at the cloud top, such as
cloud ice and snow (Smith et al. 1992; Grasso and Greenwald 2004; Grasso et al. 2008).
Therefore, this channel is capable of providing information about cloud microphysical
processes at the cloud tops.

This paper is organized as follows. We explain the data assimilation approach
employed in this study in Section 2. The synoptic case examined is described in Section 3.
Experimental design is given in Section 4, and the results are presented and discussed in
Section 5. Finally, the conclusions are drawn and future research directions are outlined in
Section 6.

2. Data assimilation approach
a. Basic equations

We employ a variant of the Maximum Likelihood Ensemble Filter (MLEF) data assimilation
approach, developed at Colorado State University (Zupanski 2005; Zupanski and Zupanski
2006; Zupanski et al. 2008). This variant includes covariance localization via local domains
(e.g., Ott et al. 2004; Yang et al. 2009; Zupanski 2009a, b), thus we call it Local MLEF
(LMLEF). The covariance localization is explained in the following subsection while the
basic equations of the original MLEF are given in the Appendix.

b. Covariance localization

Covariance localization (e.g., Houtekamer and Mitchell, 2001; Whitaker and Hamill, 2002;
Ott et al., 2004) is an effective way to account for the “missing degrees of freedom” in
ensemble-based data assimilation systems. By “missing degrees of freedom” we mean that the
number of degrees of freedom in the model state variable is much larger than the affordable
ensemble size on a given computer. This often happens in applications to complex weather
forecast models where the size of the model state variable could easily reach the order of 10" —
10%, while the computationally feasible ensemble size can hardly be increased beyond the
order of 10%. In our experiments the size of the model state vector x is Ng~ 3 ><107, thus it is
several orders of magnitude larger than the ensemble sizes employed (16 and 48 members).

We adopted the covariance localization approach based on the so-called “local
domains”, first proposed by Ott et al. (2004). In this approach, the entire model domain is
partitioned into smaller local domains and the analysis solution is defined independently for
each local domain. Due to the use of the globally defined forecast error covariance (P, ),

overlapping local domains, and/or some kind of smoothing, the assumption of “independent
local domains” is only partially enforced (e. g., Ott et al. 2004; Yang et al. 2009). The size of
the local domains typically reflects the spatial scales of the processes being analyzed (e.g.,
extratropical or tropical cyclones, ocean currents, carbon transport), thus the assumption that
the local domains are, to a degree, independent is considered appropriate. This covariance
localization approach was successfully used, in slightly different variants, in many
applications (e.g., Hunt et al. 2007; Miyoshi and Yamane 2007; Yang et al. 2009; Zupanski
2009a, b). We use the variant explained in Zupanski (2009a, b). Unlike in the original Ott et
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al. (2004) approach, we use non-overlapping local domains, which ensure a well-posed
minimization problem in each local domain and provide a straightforward definition of
information measures, since each observation belongs to a single local domain and thus
contributes to the information measures uniquely (Zupanski 2009a). A disadvantage of using
non-overlapping local domains is in possible creations of discontinuities at the boundaries
between local domains (which could appear visible in the analysis fields). To eliminate/reduce
these discontinuities, smoothing of the analysis weights is applied (e. g., Yang et al. 2009;
Zupanski 2009a, b). The use of non-overlapping local domains, in conjunction with the
smoothing, provided a satisfactory solution to the two contradictory requirements: to define a
well-posed minimization problem over each local domain and to reduce discontinuous
transitions from one local domain to another.

3. Model and data

In the data assimilation experiments of this study, we employ, as a forecast model, the non-
hydrostatic Weather Research and Forecasting (WRF) model, which uses the Advanced
Research WRF (ARW) dynamical core (Skamarock et al. 2005; Wicker and Skamarock
2002). The WRF-ARW model was configured with 15-km grid spacing and 50 vertical levels,
covering a domain of approximately 300x300 km centered over Germany. For initial and
boundary conditions the National Centers for Environmental Prediction (NCEP) Global
Forecasts System (GFS) analyses were used.

In terms of physics, the Betts-Miller-Janjic (BMJ) convective parameterization (Betts
1986, Betts and Miller 1986, Janjic 1994) was utilized, and the Mellor-Yamada-Janjic (Janjic
1994) Planetary Boundary Layer (PBL) scheme was chosen. The effects of radiative transfer
for long and short wave radiation were treated by the rapid radiative transfer model (Mlawer
et al. 1997) and the Dudhia (1989) scheme, respectively. The Mlawer scheme accounts for
multiple bands, trace gasses, and microphysics species, while the Dudhia scheme accounts for
simple downward integration and includes an efficient cloudy and clear sky absorption and
scattering. For microphysical processes a single-moment, five species, cloud microphysical
scheme (Schultz 1995) was used. The scheme of Schultz (1995) has been modified to use the
saturation adjustment method of Asai (1965), to slow the melting rate of snow in air slightly
warmer than freezing, and to allow for the formation of cloud liquid water in unsaturated grid
volumes with lapse rates approaching convective instability.

Regarding the observations, we focus our attention on synthetic radiances from the
infrared 10.35 pum channel of the future ABI instrument. We assimilate synthetic observations
because the real ABI 10.35 um radiances are not yet available. The synthetic observations
were generated using a different forecast model, the Colorado State University/Regional
Atmospheric Modeling System (CSU/RAMS; Cotton et al. 2003). As RAMS includes an
advanced two-moment microphysical scheme, it was considered adequate to generate realistic
cloud-microphysical variables and, consequently, realistic synthetic 10.35 um radiances. In
Grasso et al. (2008) it was shown that synthetic GOES-R ABI radiances based on the RAMS
microphysical variables were quite reasonable. As in Grasso et al. (2008) we create synthetic
radiances by applying the satellite observation operator (developed by Greenwald et al. 2002;
Grasso and Greenwald 2004) to the RAMS microphysical variables. The observation operator
includes a radiative transfer model at infrared wavelengths based on the delta-Eddington 2-
stream method (Deeter and Evans 1998) and cloud optical property models at all non-visible
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bands, based on modified anomalous diffraction theory (Mitchell 2000; Mitchell 2002;
Greenwald et al. 2002), applied to both liquid and ice particles. It also includes a gas
extinction model: Optical Path TRANsmittance (OPTRAN; McMillin et al. 1995).

4. Synoptic case

The synoptic case chosen for this study is the extratopical cyclone named Kyrill, which lasted
during the period January 15-19, 2007. Due to unusually strong winds, Kyrill caused
widespread damage and fatalities in Western Europe, especially in the United Kingdom and in
Germany. In figures 1a and 1b we show infrared METEOSAT imagery of Kyrill. The imagery
in figure la, valid at 1212 UTC 18 January 2007, corresponds to the beginning of the first data
assimilation cycle and the imagery in figure 1b, valid at 1912 UTC 18 January 2007,
corresponds to the end of the seventh data assimilation cycle of the experiments presented. As
the figures indicate, there is a well-developed fast-moving cloud system associated with
Kyrill. Note that the METEOSAT data plotted in figures 1a, b is not assimilated in this study.
At present, we only use the METEOSAT data to illustrate the location and the extent of the
Kyrill cloud system. Assimilation of the infrared METEOSAT radiances will be performed
for the same synoptic case in the next stage of this research and reported in a follow up
manuscript.

In the experiments of this study, we are focusing on the clouds associated with Kyrill,
since our goal is to assimilate cloudy ABI infrared radiance observations. The strong winds of
this system make the data assimilation problem more difficult since the clouds are moving
quickly and their exact locations are difficult to predict. We anticipate that the use of flow-
dependent forecast error covariance would be important for this challenging problem, since it
could assign larger uncertainties to the cloud-affected areas.

5. Experimental design

The experimental design corresponds to the so-called “non-identical twins” setup because two
different models are used: one (WRF) as a part of data assimilation, and another (RAMS) to
create observations. Unlike identical twins, the non-identical twins imply that the forecast
models are not perfect, thus achieving experimental conditions resembling assimilation of the
real ABI observations.

The WRF model is run over Europe, to capture the extratropical cyclone Kyrill. The
horizontal grid spacing of the model is 15 km and there are 50 levels in the vertical. The
synthetic 10.35 um radiances are created with a footprint of 15 km and assimilated into the
system every hour (i.e., data assimilation interval was 1 hour). Note that real ABI
observations will be available in higher resolution (0.5 to 2 km), thus this experiment
simulates the conditions of assimilation of observations that were thinned to approximately
match the resolution of the forecast model. Data thinning is often done in routine assimilation
of satellite observations at operational meteorological centers to reduce the computational
time and storage.

In the experiments presented we used two different ensemble sizes, 16 and 48, and
employed two different sets of control variables: with and without cloud ice.
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6. Results
a. Selecting control variables

We selected the following model state variables as control variables of data assimilation:
potential temperature, specific humidity, and five hydrometeors (cloud water, cloud ice, rain,
snow and graupel). We selected these control variables because we expected that they would
play significant roles in the cloud-microphysical processes (described by the Schultz
microphysical scheme). Then, we performed sensitivity experiments by excluding one control
variable at a time and by examining the impact of the absence of this control variable on the
data assimilation results. The purpose of these experiments was to evaluate how important is
the choice of the control variables for maximizing information from the assimilated
observations.

Our sensitivity experiments indicated that cloud ice and snow had more significant
impacts, as measured by improvements to both the data assimilation and the first guess
forecast, than the remaining three hydrometeors (cloud water, rain and graupel). As an
example, in figures 2-4, we summarize the impact of including/excluding cloud ice into the
control variable. The impact of snow was similar, but less pronounced. The results shown in
figures 2-4 are produced using all other initially selected control variables (potential
temperature, specific humidity, cloud water, rain, snow and graupel), with only cloud ice
switching on and off. In figure 2 we show the first guess and the analysis of potential
temperature at 850 hPa and the corresponding analysis increments (i.e., differences between
the analysis and the first guess), obtained in the experiments without and with cloud ice
adjustment. In figure 2a the first guess (1-h forecast) is given, in figures 2b and 2c the
analyses obtained without and with the cloud ice adjustment are presented, and in figures 2d
and 2e the corresponding analysis increments are plotted. By comparing figures 2a and 2b we
can see that the potential temperature analysis, obtained in the experiment without cloud ice
adjustment, is dramatically different from the background in the area extending from the
Alpine region, through northern Mediterranean and southeastern Europe, towards the
Scandinavian Peninsula. These differences exceed 25 K in some points, as shown in figure 2d.
By examining figures 2a and 2c we can see that the potential temperature analysis, obtained in
the experiment with the cloud ice adjustment (figure 2c), is not dramatically different from the
background (figure 2a). The analysis increments in figure 2c¢ are much smaller, with a
maximum magnitude of 10 K.

The next question we pose is as follows. Are the large potential temperature analysis
increments, obtained in the experiment without cloud ice adjustment, effective in making the
forecast model closer to the observations? To answer this question, we examine the results
shown in figure 3. As seen in figure 3a, the differences between the first guess and the
verification (“observed” 10.35 um radiances) are large, exceeding -0.06 W m?sr' cm and
+0.05 W m™sr”’ cm in the cloudy areas, which roughly corresponds to the errors between -60
K and +50 K in brightness temperature. The errors of such large magnitudes are due to
modeled clouds being shifted with respect to the “observed” clouds. Because the radiative
transfer model detects a warm surface instead of a cold cloud top, and vice versa, the
brightness temperature differences are large. The first guess and the analysis errors in figure 3
indicate that the WRF-produced clouds are shifted to southeast compared to the RAMS-
produced (i.e., “observed”) clouds. Also note (figures 1a and 1b), that the real clouds of the
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cyclone Kyrill are generally in this area, however, there is a shift with respect to the clouds
obtained by any of the two models. The large differences in figure 3 (especially the negative
differences) were reduced due to data assimilation; in the experiment with cloud ice
adjustment (figure 3c) the model is in better agreement with the “observations” than in the
experiment without cloud ice adjustment (figure 3b). These results indicate that the cloud ice
adjustment has a more effective impact on improving the analysis than the potential
temperature adjustment.

Finally, we show in figure 4a the cloud ice analysis increments at 600 hPa obtained in
the experiment with the cloud ice adjustment, and in figures 4b and 4c, a quantitative measure
of the amount of information of the assimilated observations, called The Degrees of Freedom
for Signal, or DES (Eq. 6), obtained in the experiments without and with cloud ice adjustment.
We present the 600 hPa level as an example of cloud ice increments. Similar increments were
obtained at other higher altitude levels, where the amount of cloud ice was non-negligible. We
can see, in figure 4a, that the analysis increments, ranging from -0.1 g kg™ to 1.5 g kg™, are
present in central and southeastern Europe, in the area of large disagreement between the
model and observations. We do not see analysis increments in the northern Mediterranean
region because the 600 hPa temperature is above freezing, preventing cloud ice to form. We
can also see, by comparing figures 4b and 4c, that introduction of cloud ice to the control
variable results in significantly increased information content of the assimilated observations,
even though the same observations were assimilated in both experiments. This is an indication
that the appropriate control variable must be chosen in order to extract more information from
the same observations.

Note that the DFS, shown in figures 4b and 4c, have blocky structures. The DFS are
calculated as total numbers of DFS over each of 25 local domains (blocks), which are the
same local domains used for covariance localization (explained in Section 2b). Even though
the information measures could be calculated for each model grid point (and the blocky
structures would disappear), we calculated them over the local domains, thus to measure the
information content contained in each local domain.

In summary, the results presented in figures 2-4 demonstrate that adjusting cloud ice is
of substantial importance for assimilation of the 10.35 um radiances, in cases when cloud ice
is present at the cloud tops. These results also indicate that excluding cloud ice from the
control variable results in unrealistic changes to the remaining components of the control
variable (e.g., potential temperature), since these remaining components could never account,
in a physically correct way, for the effect of the cloud ice. This finding confirms indications
from earlier studies (e.g., Smith et al. 1992; Grasso and Greenwald 2004; Grasso et al. 2008)
that the 10.35 pum channel should be sensitive to cloud ice. For example, in Grasso and
Greenwald (2004), it was demonstrated that the 10.35 um channel should be most sensitive to
the hydrometeors at the top of the thunderstorm. Since the top of the thunderstorm mostly
contains the cloud ice particles (also called pristine ice), the 10.35 um channel basically
measures the cloud ice in this case. More generally, the results shown in figures 2-4 indicate
that it is imperative to include all radiatively active hydrometeors into the control variable for
maximizing the benefits of assimilated cloudy radiances and to avoid obtaining degraded data
assimilation results due to neglecting some of the important hydrometeors. On the other hand,
including microphysical variables to which the radiances have little sensitivity (e.g., rain or
graupel) had negligible impact on data assimilation, thus these variables could be either
included or excluded from the control variable. In the experiments presented in the remainder
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of this paper, we keep all initially selected microphysical variables (potential temperature,
specific humidity, cloud water, cloud ice, rain, snow and graupel) as components of the
control variable.

b. Data assimilation experiments over multiple data assimilation cycles

In figure 5, we present the Root Mean Square (RMS) errors of the analysis and the first guess,
calculated with respect to the RAMS-simulated 10.35 um radiances, as functions of data
assimilation cycles. For reference, the RMS errors of the experiment without data
assimilation are also included in figure 5. As seen in figure 5, both the analysis and the first
guess are in better agreement with the “truth” than the experiment without data assimilation.
Furthermore, the analysis indicates clear improvements with respect to the first guess, and the
ensemble size of 48 members has smaller errors than the ensemble size of 16 members. The
errors in both data assimilation experiments (with 16 and 48 members) generally decrease
with time until around cycle 12, when they saturate at a certain level (with the exceptions of
increasing errors from cycle 8 to cycle 12 in some experiments). Note that the errors also
decrease, at a slower rate, in the experiment without data assimilation. This is because the
influence of the horizontal boundary conditions becomes more dominant with time. Since the
same NCEP analyses [from the Gridpoint Statistical Interpolation (GSI) system, Wu et al.
2002] were used to create boundary conditions for both WRF and RAMS, the differences
between the two models decrease with time, and consequently the differences between the
WRF-simulated and the RAMS-simulated (i.e., “observed”) radiances decrease too. In
summary, figure 5 indicates a positive impact of data assimilation of the 10.35 pwm synthetic
radiances on the analysis and short term forecast and a positive impact of the increased
ensemble size, over 17 data assimilation cycles. We have not run data assimilation
experiments beyond 17 data assimilation cycles since the analysis and forecast errors
saturated around cycle 12 in all experiments.

We also show, in figure 6, the histogram of error distributions for the data assimilation
experiment with 48 ensemble members and the experiment without data assimilation. By
comparing the results from cycles 1 and 7, shown in panels (a) and (b), respectively, we can
see that the errors are clustering around zero in the later cycle (i.e., cycle 7), indicating
improvements in the first guess, the analysis and the no assimilation experiment. The errors
from the analysis and the first guess cluster more around zero than the errors of the
experiment without assimilation (note outliers in the positive errors for the no assimilation
case). These results confirm a positive impact of data assimilation on the analysis and short-
term forecast improvements.

One can also see in figures 6a, b that the errors follow a Gaussian distribution
reasonably well. This is an indication that the commonly used assumption about Gaussian
errors (and also used in this study) is reasonable in this case. Note, however, that cloudy
satellite radiances could often depart from Gaussian distribution (e.g., could follow log-
normal distribution: cf. Grasso et al. 2009). In such cases a different cost function needs to be
minimized as proposed in Fletcher and Zupanski (20064, b).

We now examine whether the actual analysis errors are in agreement with the
estimated analysis uncertainty. Examples of difference fields, calculated between the model-
simulated radiances and the “observed” radiances at 10.35 pum and the corresponding analysis
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uncertainty o, (Eq. 7) are shown in figures 7 and 8. The differences are plotted for data

assimilation cycle 7, valid at 1900 UTC 18 Jan 2007, and they correspond to the experiment
without assimilation (i.e., old forecast, figure 7a), the first guess (1-h forecast after data
assimilation, figure 7b) and the analysis (figure 7¢). As indicated before, there are large
discrepancies between the model and the “observations” in areas over the Alps, the northern
Mediterranean and southeastern Europe. These discrepancies remain relatively large
throughout the entire period (17 data assimilation cycles); however, they are decreasing with
time in both experiments (with and without data assimilation), as the RMS errors in figure 5
indicate. Nevertheless, we can still see a pronounced dipole of positive-negative differences
[with maxima exceeding -0.06 or +0.05 W m™ sr”! cm] extending over the Alps, the northern
Mediterranean and southeastern Europe in figure 7a (experiment without data assimilation).
The impact of data assimilation is to significantly reduce the magnitudes of the large
differences for the first guess (figure 7b) and to a lesser extent the analysis (figure 7¢c). Note,
however, that the large differences still remain in this area and they appear in some additional
areas (e.g., over the northern part of the Pyrenean peninsula). Due to the non-identical twins
setup we do not expect that the differences should eventually become negligible throughout
the entire model domain, as they would in the identical twins setup. We do expect, however,
that the method should be able to assign realistic (i.e., large) uncertainties to the points where
these differences are large.

As we can see in figure 8a, the analysis uncertainty is generally larger in the areas
where the analysis-minus-observations differences are larger (in figure 7c). We can also see
that the magnitudes of the analysis errors are in good agreement: for example, there are areas
of large analysis errors, exceeding £0.04 W m™ sr’' cm, in figure 7c (e.g., Alpine region,
northern Mediterranean, southeastern and northeastern Europe), and the estimated analysis
uncertainty is generally in the range 3.5-5 W m? st cm in these areas. These results confirm
that the LMLEF calculated analysis uncertainty is a good estimate of the actual analysis errors
in terms of both the magnitude and structure of the errors. In figure 8b we show an
information measure, DFS (Eq. 6), calculated in data assimilation cycle 7. As the figure
indicates, areas (i.e., blocks) with large values of DFS generally coincide with the large
analysis uncertainty in figures 7c and 8a. The results shown in figures 8a and 8b confirm the
flow-dependent character of the analysis error covariance and the information measures,
because the analysis errors and the information measures follow flow characteristics of the
Kyrill cloud system. Flow-dependent analysis and forecast error covariance matrices are
considered important ingredients of advanced data assimilation systems.

Let us now examine the vertical cross section taken along the line AB (the location of
the cross section is shown in figures 7 and 8). As seen in figure 7, the cross section is taken in
the area where the differences between the model and the “observations” are large and they
also change sign within the cross section. The analysis uncertainty and the information
measure (DFS) are also large in this area (see figure 8). We present the vertical cross section
of potential temperature and cloud ice in figure 9, including “observations” and model results.
We can see that the model-produced potential temperature is generally colder in the lower
levels compared to the “observations”, and the opposite is true for the upper levels. We also
see large differences between the modeled and the “observed” cloud ice in both the
magnitudes and the locations of the maximum values. These differences, even though large,
are reasonable: we are comparing two different forecast models, which have different
dynamical cores and microphysical schemes. Nevertheless, the impact of data assimilation
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1

2

2 should be in reducing, to some extent, these large differences. By comparing the experiment
5 without data assimilation (figure 9b) with the 1-h first guess forecast initialized by data

6 assimilation (figure 9c¢) and the analysis (figure 9d) we can see that the impact of data

7 assimilation is relatively small on the potential temperature, but quite pronounced on the

8 cloud ice. For example, the maximum of the cloud ice has moved westward in the first guess
20 forecast (figure 9¢) and the analysis (figure 9d), which is in better agreement with the

11 “observations” (figure 9a) than the maximum obtained in the experiment without data

12 assimilation (figure 9b). Additionally, the vertical structure of the cloud ice is in generally

13 better agreement with the “observations” for the analysis as compared to the first guess, which
14 is evidence of the analysis improvement with respect to the first guess. In conclusion, the

15 impact of data assimilation is seen in more significant changes (which were also in the right
i? direction) in the cloud ice than in the potential temperature. These results are reasonable, since
18 the 10.35 um radiance is expected to be more sensitive to the cloud ice than to any other

19 microphysical variable under the conditions of this experiment (also confirmed in Grasso and
3(1) Greenwald 2004 for a similar window channel of 10.7 pm).

gg 7. Conclusions

24

25 In this study we assimilated synthetic GOES-R ABI radiances at 10.35 um in cloudy

26 conditions to evaluate the potential impact of these observations on improving model-

% simulated clouds. In particular, we were interested in extracting maximum information from
9 such observations by taking into account when and where this information is needed the most.
30 Our criteria for defining when and where the information is needed the most were based on
31 information theory and the use of information measures (such as DFS). We have performed
32 cycled data assimilation experiments for the case of the extratropical cyclone Kyrill. This case
33 was especially challenging because of the large errors in model-simulated radiances due to
gg spatially shifted clouds.

36 The experimental results indicated that the same GOES-R observations could bring
37 varying amounts of information, depending on the choice for the control variable in data

38 assimilation. When cloud ice was included into the control variable, the information content
39 of data, as measured by DFS, was significantly increased and the data assimilation results

22 were much improved compared to the case without including cloud ice into the control

42 variable. The impact of data assimilation was also seen in much more significant changes to
43 the cloud ice than to other model state variables, such as potential temperature. This is not

44 surprising, since the 10.35 pum channel is expected to be sensitive to the hydrometeors at the
45 cloud top, but not sensitive to the air temperature or potential temperature (e.g., Smith et al.
jg 1992; Grasso and Greenwald 2004). Therefore, our results indicated that it is imperative to
48 include all radiatively active hydrometeors into the control variable for maximizing the

49 benefits of assimilated cloudy radiances and to avoid obtaining degraded data assimilation

50 results due to neglecting some of the important hydrometeors. On the other hand,

51 microphysical variables to which the radiances have little sensitivity (e.g., rain or graupel)

52 could be either included or excluded from the control variable.

gj The data assimilation and short term forecast results over multiple data assimilation
55 cycles have clearly indicated improvements due to assimilation of the GOES-R ABI radiance
56 “observations”, compared to the experiment without data assimilation. The experimental

57 results also indicated that the flow-dependent DFS used in this study realistically reflect the
58

59
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actual forecast uncertainty: the values of DFS were the largest in the areas of largest forecast
errors. This is a confirmation that the data assimilation method used in this study has the
capability to maximize information content of the assimilated observations.

In future work, we plan to further evaluate the capability of the LMLEF approach, and
the ensemble-based data assimilation methods in general, to extract maximum information
from real satellite observations. For this purpose we plan to assimilate cloudy radiances
similar to the future ABI radiances (e. g., from the METEOSAT Second Generation —- MSG
and/or the Atmospheric Infrared Sounder — AIRS instruments).

Appendix: Basic equations of the MLEF

The MLEF seeks a maximum likelihood solution of the posterior Probability Density
Function (PDF), which is equivalent to seeking a minimum of the following cost function
(under the standard assumption of Gaussian PDFs for the observation and forecast errors)

J(x)= l(x —x! ) P (- x )t l[y ~H®[ R'[y-H®)]. (1)
2 2

The cost function (1) measures the differences between the model and the observations, where
vector y of dimension N, (number of observations) is the observation vector, vector x of
dimension N (model state dimension) is the model state vector, non-linear operator H is an
observation operator, matrix R is the observation error covariance and matrix Pf 1s the forecast

error covariance. The index frefers to the forecast (used as a first guess). The matrix P, is

defined in a subspace spanned by ensemble forecast perturbations as
P=p/ pl - Pl p/=M(x"+p)-Mx") . @)

where M denotes the nonlinear forecast model, the superscript a refers to the analysis, and

N is the number of ensembles. The vectors p/and p/ represent columns of the square roots
of the analysis and forecast error covariances, respectively. The square root of the analysis
error covariance is defined at the analysis solution x“as

P = Pf1/2 |:INE N (Z(x“))T Z(x")}m ’ )

where I, isan N, x N, identity matrix and the matrix Z(x“)is the observation perturbation

matrix at the analysis solution, defined by the following equation
Zx)=[z7,x) 7,x) - - 2y, ()]  ZG&H=R[HE"+p)-HE]. 4)

The inverse square root calculation in (3) is obtained via eigenvalue decomposition of the
matrix 1 v, T Z(x“) Z(x"). It is calculated as a symmetric square root, which is unique (e.g.,

Wang et al. 2004; Zupanski 2005; Wei et al. 2006).
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1
2
2 We also calculate, as a diagnostic, the so-called information matrix C, of dimensions
5 N, x N, defined in ensemble subspace as
6
g C=Z(x")YZ(x"), )
9
10 which we use to calculate information measures, such as Degrees of Freedom for Signal
11 (DFS) defined as (e.g., Shannon and Weaver 1949; Rodgers, 2000; Zupanski et al., 2007)
12
: “ i
DFS = : , 6
15 gam,?) ©
16
17
18 where index i denotes an ensemble member and A are eigenvalues of the information matrix
19 C
20 ) .. . ) . . . .
21 As an additional diagnostic, we also calculate analysis uncertainty in observation
22 locations and in terms of the observed variable (10.35 pum radiance in the experiments
23 presented) to be able to compare it with the actual analysis uncertainty, defined by the
24 differences between the analysis and the “truth” (the “truth” being defined by a different
gg forecast model in our “non-identical twins” experimental setup). The analysis uncertainty,
27 defined as the standard deviation of the analysis errors ( o7, ), is calculated using the
28 following formula
29
30 .
31 a . /2 a a T/2
2 O = %zag[R G(x )G(x )7R }} , (7)
33
gg where the N, x N, matrix G consists of column perturbation vectors g,(x“)defined by:
36
o Gx)=[g,(x) &) - - gy &)] g@)=RV[HE"+pH-HE)].  ®)
39
22 Note similarity between equations (8) and (4): the only difference is that for calculating
42 matrix G the analysis perturbations p; are used, while for matrix Z the forecast perturbations
ji p; are employed. Note also that both the forecast perturbation vectors [zi (x“ )] and the
45 analysis perturbation vectors [ g.(x* )] are calculated using non-linear observation operators
j? H, in accordance with the non-linear character of the MLEF algorithm.
48
49 The equations (1) — (6) are solved employing an iterative minimization (Zupanski
50 2005). In addition, as demonstrated in Zupanski et al. (2008), assumptions of differentiability,
g; used in the standard gradient-based minimization methods, were not necessary, thus this
53 approach is considered adequate for non-linear and discontinuous cloud microphysical
54 processes, which play an important role in the experiments of this study.
55
56
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Figure captions

Figure 1. METEOSAT infrared satellite imagery of Kyrill, from 18 January 2007 at (a) 1212
UTC, and (b) 1912 UTC.

Figure 2. Potential temperature at 850 hPa and the corresponding analysis increments (i.e.,
differences between the analysis and the first guess), obtained in the experiments without and
with cloud ice adjustment. The first guess (1-h forecast) is shown in (a), the analysis without
cloud ice adjustment is plotted in (b) and the analysis with cloud ice adjustment is given in
(c). The corresponding analysis increments are shown in (d) and (e) for the experiments
without and with cloud ice adjustment, respectively.

Figure 3. Differences calculated between the model-simulated and the “observed” 10.35 um
radiances for (a) the first guess forecast, (b) the analysis without cloud ice adjustment and (c)
the analysis with cloud ice adjustment. The differences correspond to the end of the first data
assimilation cycle (1300 UTC 18 Jan 2007). Units for radiances are W m~Zsr! em.

Figure 4. (a) Cloud ice analysis increments (in units of g kg™) at 600 hPa level obtained in the
experiment with the cloud ice adjustment in the first data assimilation cycle (1300 UTC 18
Jan 2007). Information content of the assimilated observations (DFS, Eq. 6) calculated in the
same data assimilation cycle is shown for the experiment without cloud ice adjustment in (b)
and for the experiment with cloud ice adjustment in (c). The DFS in (b) and (c) are non-
dimensional quantities, which count the total number of independent pieces of information per
local domain (block).

Figure 5. RMS errors of the analysis (ANL, dashed lines) and the first guess (FG, solid lines)
calculated with respect to the RAMS-simulated 10.35 um radiances and plotted as functions
of data assimilation cycles. Results from the experiments with 16 and 48 ensemble members
are shown. For reference, the RMS errors of the experiment without data assimilation
(NO_OBS, solid line) are also included. Units for radiances are W m2sr! cm.

Figure 6. Probability histogram of the errors of the 10.35 um radiances, calculated with
respect to RAMS-simulated radiances, for the first guess (FG), the analysis (ANL) and the
experiment without assimilation (NO_OBS). Data assimilation experiments using ensemble
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1

2

2 size of 48 members are shown. Results from first (a) and seventh (b) data assimilation cycle

5 are presented. Units for radiances are W m™ s’ cm.

6

7 Figure 7. Differences, corresponding to the end of the seventh data assimilation cycle (1900

8 UTC 18 Jan 2007), calculated between the model-simulated the “observed” 10.35 um

(‘i 0 radiances are plotted for (a) the experiment without data assimilation (i.e., old forecast), (b) 1-
11 h forecast used as a first guess in data assimilation, and (c) the analysis. The units for

12 radiances are W m ™ sr'' cm. Line AB indicates location of the vertical cross section shown in
13 figure 9.

14

ig Figure 8. Analysis uncertainty for the 10.35 um radiances (o, , Eq. 7) is plotted in (a) and
17 the corresponding DFS (Eq. 6) is shown in (b). The results are given for the seventh data

18 assimilation cycle, thus are comparable to the results in figure 7. The units for radiances are
-'218 W m™sr” cm, however the values are scaled by 100.

g; Figure 9. Vertical cross section taken along the line AB shown in figures 7 and 8. Potential
23 temperature (shading) and cloud ice (contours) are shown in the figure. The results are valid at
24 the end of seventh data assimilation cycle (1900 UTC 18 January 2007). The “observations”
25 (RAMS forecasts) are given in panel (a), the forecast results from the experiment without

g? assimilation are shown in (b), the 3-h background in (c¢) and the analysis in (d). Units for

o8 potential temperature are K and for cloud ice g kg™
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Figure 1. Meteosat infrared satellite imagery of Kyrill, from 18 January 2007 at (a) 1212 UTC, and (b)
1912 UTC
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39 Figure 2. Potential temperature (K) at 850 hPa and the corresponding analysis increments (i.e.,
differences between the analysis and the first guess), obtained in the experiments without and with cloud
4o  ice adjustment. The first guess (1-h forecast) is shown in (a), the analysis without cloud ice adjustment is
43  plotted in (b) and the analysis with cloud ice adjustment is given in (c). The corresponding analysis

44 increments are shown in (d) and (e) for the experiments without and with cloud ice adjustment,

45 respectively.
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3g  Figure 3. Differences calculated between the model-simulated and the “observed” 10.35 um radiances
39  for (a) the first guess forecast, (b) the analysis without cloud ice adjustment and (c) the analysis with
40 cloud ice adjustment. The differences correspond to the end of the first data assimilation cycle (1300
41 UTC 18 Jan 2007). The units for radiances are W m2sr! em.
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37  Figure 4. (a) Cloud ice analysis increments (in units of g kg™) at 600 hPa level obtained in the

38  experiment with the cloud ice adjustment in the first data assimilation cycle (1300 UTC 18 Jan 2007).

39 Information content of the assimilated observations (DFS, Eq. 6) calculated in the same data assimilation
cycle is shown for the experiment without cloud ice adjustment in (b) and for the experiment with cloud
42  ice adjustment in (c). The DFS in (b) and (¢) are non-dimensional quantities, which count the total

43  number of independent pieces of information per local domain (block).
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Figure 5. RMS errors of the analysis (ANL, dashed lines) and the first guess (FG, solid lines) calculated
with respect to the RAMS-simulated 10.35 um radiances and plotted as functions of data assimilation
cycles. Results from the experiments with 16 and 48 ensemble members are shown. For reference, the
RMS errors of the experiment without data assimilation (NO_OBS, solid line) are also included. Units
for radiances are W m™ sr’! cm.
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54Figure 6. Probability histogram of the errors of the 10.35 um radiances, calculated with respect to
S5RAMS-simulated radiances, for the first guess (FG), the analysis (ANL) and the experiment without
56 4ssimilation (NO_OBS). Data assimilation experiments using ensemble size of 48 members are shown.
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36  Figure 7. Differences, corresponding to the end of the seventh data assimilation cycle (1900 UTC 18
Jan 2007), calculated between the model-simulated and the “observed” 10.35 um radiances are plotted
39 for (a) the experiment without data assimilation (i.e., old forecast), (b) 1-h forecast used as a first guess
40 1ndata assimilation, and (c) the analysis. The units for radiances are W m?sr! cm. Line AB indicates
41  the location of the vertical cross section shown in figure 9.
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Figure 8. Analysis uncertainty for the 10.35 pm radiances ( o, , Eq. 7) is plotted in (a) and the

corresponding DFS (Eq. 6) is shown in (b). The results are given for the seventh data assimilation
cycle, thus are comparable to the results in figure 7. The units for radiances are W m?sr cm,
however the values are scaled by 100.
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Figure 9. Vertical cross section taken along the line AB shown in figures 7 and 8. Potential
temperature (shading) and cloud ice (contours) are shown in the figure. The results are valid at the
end of seventh data assimilation cycle (1900 UTC 18 January 2007). The “observations” (RAMS
forecasts) are given in panel (a), the forecast results from the experiment without assimilation are
shown in (b), the 3-h background in (c) and the analysis in (d). Units for potential temperature are
K and for cloud ice g kg™
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