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Abstract 

 

The Weather Research and Forecasting (WRF) model and the Maximum Likelihood 

Ensemble Filter (MLEF) data assimilation approach are used to examine the potential impact 

of observations from the future Geostationary Operational Environmental Satellite, generation 

R (GOES-R) on improving our knowledge about clouds. Synthetic radiances are assimilated 

from the 10.35 µm channel of the GOES-R Advanced Baseline Imager (ABI) employing a 

“non-identical twins” experimental setup. The experimental results are examined for an 

extratropical cyclone named Kyrill that produced unusually strong winds, widespread 

damage, and fatalities in Western Europe in January 2007. The data assimilation problem is 

especially challenging for this case, as there is a large error in the model-simulated radiances 

resulting from incorrect cloud location. Although this problem is difficult to eliminate the data 

assimilation results indicate the potential of GOES-R data to significantly reduce these errors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

________________________________ 
*
Corresponding author address: Dusanka Zupanski, Colorado State University, Cooperative 

Institute for Research in the Atmosphere, Foothill Campus, Fort Collins, CO 80523-1735, 

U.S.A. E-mail: Zupanski@cira.colostate.edu 

Page 1 of 34

http://mc.manuscriptcentral.com/tres   Email: IJRS-Administrator@Dundee.ac.uk

International Journal of Remote Sensing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 2 

1. Introduction 

 

Current and new satellite missions provide a wealth of information to improve our 

understanding of weather, climate, ocean and the Earth system in general. This study is 

motivated by the needs of new satellite missions to undergo all necessary preparations well 

before the satellite launch in order to make sure that the observations will be successfully used 

as soon as they become available. Data assimilation studies, such as this one, are being 

employed to prepare methodologies capable of addressing the challenges of the new satellite 

missions. These methodologies should be able to effectively assimilate the new satellite 

observations and quantify the information content of the assimilated data. This study focuses 

on the data assimilation needs of the next-generation series of Geostationary Operational 

Environmental Satellite (GOES-R) mission, currently scheduled for launch in the year 2015. 

Our objective is to explore the information content and further improve capabilities of the 

current state-of-the-art data assimilation methods in order to extract maximum information 

from the GOES-R data, especially in cloudy scenes.  

Data assimilation methods have been successfully used to assimilate various satellite 

observations in order to improve weather, climate, ocean, hydrological, and ecological 

forecasts over several decades (L’Ecuyer et al. 2006; Reichle 2007; Carton and Giese 2008; 

Hollingsworth et al. 2008; Jung et al. 2008; Keppenne et al. 2008; and Migliorini et al. 2008 

are some recent examples). It is commonly accepted that satellite and other remote sensing 

observations are a major source of information for today’s geophysical models due to wide 

spatial and high temporal coverage as compared to the non-remote sensing (the so-called 

conventional) observations.  Current state-of-the-art data assimilation methods typically 

assimilate satellite radiances or brightness temperatures, rather than derived model state 

parameters (retrievals). This is mainly because the observation errors of the 

radiances/brightness temperatures are better known (and are typically less biased) than the 

observation errors of the retrievals. 

One of the most difficult challenges of satellite data assimilation is assimilation of 

satellite radiances in cloudy conditions. Some of the major difficulties arise from the 

nonlinear and often discontinuous character of modeled cloud microphysical processes and 

from largely unknown forecast error covariances of these processes. Because of these and 

many other difficulties, the operational weather centers have been assimilating clear-sky (or 

cloud cleared) radiances for decades, thus discarding important information about clouds and 

precipitation, as well as other atmospheric variables, contained in the cloudy visible, infrared 

and microwave radiances (more about the importance of assimilation of cloudy radiances can 

be found, for example, in Andersson et al. 2005 and Errico et al. 2007). Nevertheless, cloudy 

satellite retrievals can also bring important information about precipitation and clouds, as 

demonstrated in the recent studies by Hou and Zhang (2007) and Lin et al. (2007), where the 

Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) and Special Sensor 

Microwave Imager (SSM/I) tropical rainfall observations were assimilated.  

Thanks to advancements in numerical modeling and data assimilation methods, 

assimilation of cloudy radiances has advanced significantly in the last decade, especially in 

the atmospheric data assimilation applications. In a study by Chevallier et al. (2004) cloud-

affected satellite infrared radiances were successfully assimilated using a variational data 

assimilation method. They pointed out that for some cloud-affected channels of the 

METEOSAT and Atmospheric Infrared Sounder (AIRS) instruments, the linearity assumption 
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might still be valid, thus these channels were easier to assimilate. In Vukicevic et al. (2004, 

2006) assimilation of the GOES imager brightness temperatures into a cloud-resolving model 

was successfully performed, indicating clear benefits in improved cloud analyses and short-

term forecasts. It is important to note that the 4-dimensional variational (4D-Var) data 

assimilation approach used in Vukicevic et al. (2004, 2006) involved an iterative 

minimization and nonlinear updates of the cloud state variables in fine spatial and temporal 

resolution, which was helpful to alleviate some of the difficulties due to nonlinearities of the 

cloud microphysical processes. In Bauer et al. (2006a, b) the approach called 1D-Var+4D-Var 

was introduced for assimilation of precipitation-affected microwave radiances, which was also 

adopted for operational application at the European Centre for Medium-Range Weather 

Forecasts (ECMWF). The two-step approach, where satellite radiances are assimilated by the 

nonlinear 1D-Var step to produce increments of total column water vapor, and then these 

increments are assimilated by the linear (so-called incremental) 4D-Var step, has proven 

better in handling nonlinearities than the incremental 4D-Var approach alone. In Weng et al. 

(2007) rain-affected satellite microwave radiances from the Advanced Microwave Sounding 

Unit (AMSU) and the Advanced Microwave Scanning Radiometer (AMSR-E) are assimilated 

to improve hurricane vortex analysis. They used an approach called hybrid variational 

(HVAR) scheme, which is similar to the ECMWF 1D-Var+4D-Var approach; however, they 

employed a different model, the fifth-generation Pennsylvania State University–National 

Center for Atmospheric Research Mesoscale Model (MM5) and its adjoint (Zou et al. 1998; 

Zou and Xiao 2000). The data assimilation results indicated improved, more detailed, 

structures for the hurricane warm core at the upper troposphere and enhanced lower-level 

wind speed and upper-level divergence, thus highlighting the importance of assimilation of 

cloudy satellite radiances.  

Novel, ensemble-based, data assimilation methods hold a potential to overcome some 

of the difficulties of cloud and precipitation assimilation, especially because of the use of 

flow-dependent forecast error covariances and an improved treatment of nonlinearities (due to 

not using tangent linear and adjoint models). However, applications of the ensemble-based 

data assimilation methods to remote sensing observations in general are still rare, and the 

experience with assimilation of cloudy satellite radiances is, to our knowledge, non-existent. 

Nevertheless, the potential of these methods to further improve the analysis and forecast of 

clouds and precipitation is evident from the currently available studies (e.g., Liu et al. 2008; 

Meng and Zhang 2008; Whitaker et al. 2008; Aksoy et al. 2009), which were performed using 

conventional and/or some remote sensing observations. Therefore, further exploring the 

ensemble data assimilation methods in cloud and precipitation assimilation should be well 

worth the effort. 

In this study, we report the results of a pilot study, performed to evaluate the potential 

of the ensemble data assimilation methods to extract maximum information from the future 

GOES-R radiance observations in cloudy scenes. Through the use of information measures 

based on the flow-dependent forecast error covariance matrix, we define when and where the 

observed information is needed the most. This is in the areas where the flow-dependent 

forecast uncertainty is the largest. We focus on the impact of the observations from the 

Advanced Baseline Imager (ABI), an instrument that will have significant improvements upon 

the current GOES imager with more spectral bands, higher spatial and temporal resolution, 

better navigation, and more accurate calibration (Schmit et al. 2005). It will also have 

improved temporal and spatial resolution relative to those of the GOES-13/O/P sounders 

Page 3 of 34

http://mc.manuscriptcentral.com/tres   Email: IJRS-Administrator@Dundee.ac.uk

International Journal of Remote Sensing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 4 

(Schmit et al. 2008). Before using observed radiances, synthetic ABI radiances at 10.35 µm 

were assimilated as a first step in this study. The 10.35 µm channel was selected because it is 

a clean window channel, expected to be sensitive to the hydrometeors at the cloud top, such as 

cloud ice and snow (Smith et al. 1992; Grasso and Greenwald 2004; Grasso et al. 2008). 

Therefore, this channel is capable of providing information about cloud microphysical 

processes at the cloud tops.  

This paper is organized as follows. We explain the data assimilation approach 

employed in this study in Section 2. The synoptic case examined is described in Section 3. 

Experimental design is given in Section 4, and the results are presented and discussed in 

Section 5. Finally, the conclusions are drawn and future research directions are outlined in 

Section 6.  

 

2. Data assimilation approach 

 

a. Basic equations 

 

We employ a variant of the Maximum Likelihood Ensemble Filter (MLEF) data assimilation 

approach, developed at Colorado State University (Zupanski 2005; Zupanski and Zupanski 

2006; Zupanski et al. 2008). This variant includes covariance localization via local domains 

(e.g., Ott et al. 2004; Yang et al. 2009; Zupanski 2009a, b), thus we call it Local MLEF 

(LMLEF). The covariance localization is explained in the following subsection while the 

basic equations of the original MLEF are given in the Appendix.  

 

b. Covariance localization 

 

Covariance localization (e.g., Houtekamer and Mitchell, 2001; Whitaker and Hamill, 2002; 

Ott et al., 2004) is an effective way to account for the “missing degrees of freedom” in 

ensemble-based data assimilation systems. By “missing degrees of freedom” we mean that the 

number of degrees of freedom in the model state variable is much larger than the affordable 

ensemble size on a given computer. This often happens in applications to complex weather 

forecast models where the size of the model state variable could easily reach the order of 10
7
 – 

10
8
, while the computationally feasible ensemble size can hardly be increased beyond the 

order of 10
2
. In our experiments the size of the model state vector x is NS ≈ 3 ×10

7
, thus it is 

several orders of magnitude larger than the ensemble sizes employed (16 and 48 members). 

 We adopted the covariance localization approach based on the so-called “local 

domains”, first proposed by Ott et al. (2004). In this approach, the entire model domain is 

partitioned into smaller local domains and the analysis solution is defined independently for 

each local domain. Due to the use of the globally defined forecast error covariance ( fP ), 

overlapping local domains, and/or some kind of smoothing, the assumption of “independent 

local domains” is only partially enforced (e. g., Ott et al. 2004; Yang et al. 2009). The size of 

the local domains typically reflects the spatial scales of the processes being analyzed (e.g., 

extratropical or tropical cyclones, ocean currents, carbon transport), thus the assumption that 

the local domains are, to a degree, independent is considered appropriate.  This covariance 

localization approach was successfully used, in slightly different variants, in many 

applications (e.g., Hunt et al. 2007; Miyoshi and Yamane 2007; Yang et al. 2009; Zupanski 

2009a, b). We use the variant explained in Zupanski (2009a, b). Unlike in the original Ott et 
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al. (2004) approach, we use non-overlapping local domains, which ensure a well-posed 

minimization problem in each local domain and provide a straightforward definition of 

information measures, since each observation belongs to a single local domain and thus 

contributes to the information measures uniquely (Zupanski 2009a). A disadvantage of using 

non-overlapping local domains is in possible creations of discontinuities at the boundaries 

between local domains (which could appear visible in the analysis fields). To eliminate/reduce 

these discontinuities, smoothing of the analysis weights is applied (e. g., Yang et al. 2009; 

Zupanski 2009a, b). The use of non-overlapping local domains, in conjunction with the 

smoothing, provided a satisfactory solution to the two contradictory requirements: to define a 

well-posed minimization problem over each local domain and to reduce discontinuous 

transitions from one local domain to another.  

 

3. Model and data 

 

In the data assimilation experiments of this study, we employ, as a forecast model, the non-

hydrostatic Weather Research and Forecasting (WRF) model, which uses the Advanced 

Research WRF (ARW) dynamical core (Skamarock et al. 2005; Wicker and Skamarock 

2002). The WRF-ARW model was configured with 15-km grid spacing and 50 vertical levels, 

covering a domain of approximately 300x300 km centered over Germany. For initial and 

boundary conditions the National Centers for Environmental Prediction (NCEP) Global 

Forecasts System (GFS) analyses were used.   

In terms of physics, the Betts-Miller-Janjic (BMJ) convective parameterization (Betts 

1986, Betts and Miller 1986, Janjic 1994) was utilized, and the Mellor-Yamada-Janjic (Janjic 

1994) Planetary Boundary Layer (PBL) scheme was chosen. The effects of radiative transfer 

for long and short wave radiation were treated by the rapid radiative transfer model (Mlawer 

et al. 1997) and the Dudhia (1989) scheme, respectively. The Mlawer scheme accounts for 

multiple bands, trace gasses, and microphysics species, while the Dudhia scheme accounts for 

simple downward integration and includes an efficient cloudy and clear sky absorption and 

scattering. For microphysical processes a single-moment, five species, cloud microphysical 

scheme (Schultz 1995) was used. The scheme of Schultz (1995) has been modified to use the 

saturation adjustment method of Asai (1965), to slow the melting rate of snow in air slightly 

warmer than freezing, and to allow for the formation of cloud liquid water in unsaturated grid 

volumes with lapse rates approaching convective instability. 

Regarding the observations, we focus our attention on synthetic radiances from the 

infrared 10.35 µm channel of the future ABI instrument. We assimilate synthetic observations 

because the real ABI 10.35 µm radiances are not yet available. The synthetic observations 

were generated using a different forecast model, the Colorado State University/Regional 

Atmospheric Modeling System (CSU/RAMS; Cotton et al. 2003). As RAMS includes an 

advanced two-moment microphysical scheme, it was considered adequate to generate realistic 

cloud-microphysical variables and, consequently, realistic synthetic 10.35 µm radiances. In 

Grasso et al. (2008) it was shown that synthetic GOES-R ABI radiances based on the RAMS 

microphysical variables were quite reasonable. As in Grasso et al. (2008) we create synthetic 

radiances by applying the satellite observation operator (developed by Greenwald et al. 2002; 

Grasso and Greenwald 2004) to the RAMS microphysical variables. The observation operator 

includes a radiative transfer model at infrared wavelengths based on the delta-Eddington 2-

stream method (Deeter and Evans 1998) and cloud optical property models at all non-visible 
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bands, based on modified anomalous diffraction theory (Mitchell 2000; Mitchell 2002; 

Greenwald et al. 2002), applied to both liquid and ice particles. It also includes a gas 

extinction model: Optical Path TRANsmittance (OPTRAN; McMillin et al. 1995). 

 

4. Synoptic case 

 

The synoptic case chosen for this study is the extratopical cyclone named Kyrill, which lasted 

during the period January 15-19, 2007. Due to unusually strong winds, Kyrill caused 

widespread damage and fatalities in Western Europe, especially in the United Kingdom and in 

Germany. In figures 1a and 1b we show infrared METEOSAT imagery of Kyrill. The imagery 

in figure 1a, valid at 1212 UTC 18 January 2007, corresponds to the beginning of the first data 

assimilation cycle and the imagery in figure 1b, valid at 1912 UTC 18 January 2007, 

corresponds to the end of the seventh data assimilation cycle of the experiments presented. As 

the figures indicate, there is a well-developed fast-moving cloud system associated with 

Kyrill. Note that the METEOSAT data plotted in figures 1a, b is not assimilated in this study. 

At present, we only use the METEOSAT data to illustrate the location and the extent of the 

Kyrill cloud system. Assimilation of the infrared METEOSAT radiances will be performed 

for the same synoptic case in the next stage of this research and reported in a follow up 

manuscript.  

In the experiments of this study, we are focusing on the clouds associated with Kyrill, 

since our goal is to assimilate cloudy ABI infrared radiance observations. The strong winds of 

this system make the data assimilation problem more difficult since the clouds are moving 

quickly and their exact locations are difficult to predict. We anticipate that the use of flow-

dependent forecast error covariance would be important for this challenging problem, since it 

could assign larger uncertainties to the cloud-affected areas.  

 

5. Experimental design 

 

The experimental design corresponds to the so-called “non-identical twins” setup because two 

different models are used: one (WRF) as a part of data assimilation, and another (RAMS) to 

create observations. Unlike identical twins, the non-identical twins imply that the forecast 

models are not perfect, thus achieving experimental conditions resembling assimilation of the 

real ABI observations.  

The WRF model is run over Europe, to capture the extratropical cyclone Kyrill. The 

horizontal grid spacing of the model is 15 km and there are 50 levels in the vertical. The 

synthetic 10.35 µm radiances are created with a footprint of 15 km and assimilated into the 

system every hour (i.e., data assimilation interval was 1 hour). Note that real ABI 

observations will be available in higher resolution (0.5 to 2 km), thus this experiment 

simulates the conditions of assimilation of observations that were thinned to approximately 

match the resolution of the forecast model. Data thinning is often done in routine assimilation 

of satellite observations at operational meteorological centers to reduce the computational 

time and storage. 

In the experiments presented we used two different ensemble sizes, 16 and 48, and 

employed two different sets of control variables: with and without cloud ice.   
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6. Results 

 

a. Selecting control variables 

 

We selected the following model state variables as control variables of data assimilation: 

potential temperature, specific humidity, and five hydrometeors (cloud water, cloud ice, rain, 

snow and graupel). We selected these control variables because we expected that they would 

play significant roles in the cloud-microphysical processes (described by the Schultz 

microphysical scheme). Then, we performed sensitivity experiments by excluding one control 

variable at a time and by examining the impact of the absence of this control variable on the 

data assimilation results. The purpose of these experiments was to evaluate how important is 

the choice of the control variables for maximizing information from the assimilated 

observations. 

Our sensitivity experiments indicated that cloud ice and snow had more significant 

impacts, as measured by improvements to both the data assimilation and the first guess 

forecast, than the remaining three hydrometeors (cloud water, rain and graupel). As an 

example, in figures 2-4, we summarize the impact of including/excluding cloud ice into the 

control variable.  The impact of snow was similar, but less pronounced. The results shown in 

figures 2-4 are produced using all other initially selected control variables (potential 

temperature, specific humidity, cloud water, rain, snow and graupel), with only cloud ice 

switching on and off.  In figure 2 we show the first guess and the analysis of potential 

temperature at 850 hPa and the corresponding analysis increments (i.e., differences between 

the analysis and the first guess), obtained in the experiments without and with cloud ice 

adjustment. In figure 2a the first guess (1-h forecast) is given, in figures 2b and 2c the 

analyses obtained without and with the cloud ice adjustment are presented, and in figures 2d 

and 2e the corresponding analysis increments are plotted. By comparing figures 2a and 2b we 

can see that the potential temperature analysis, obtained in the experiment without cloud ice 

adjustment, is dramatically different from the background in the area extending from the 

Alpine region, through northern Mediterranean and southeastern Europe, towards the 

Scandinavian Peninsula. These differences exceed 25 K in some points, as shown in figure 2d. 

By examining figures 2a and 2c we can see that the potential temperature analysis, obtained in 

the experiment with the cloud ice adjustment (figure 2c), is not dramatically different from the 

background (figure 2a). The analysis increments in figure 2c are much smaller, with a 

maximum magnitude of 10 K.  

The next question we pose is as follows. Are the large potential temperature analysis 

increments, obtained in the experiment without cloud ice adjustment, effective in making the 

forecast model closer to the observations? To answer this question, we examine the results 

shown in figure 3. As seen in figure 3a, the differences between the first guess and the 

verification (“observed” 10.35 µm radiances) are large, exceeding -0.06 W m
-2 

sr
-1 

cm and 

+0.05 W m
-2 

sr
-1 

cm in the cloudy areas, which roughly corresponds to the errors between -60 

K and +50 K in brightness temperature. The errors of such large magnitudes are due to 

modeled clouds being shifted with respect to the “observed” clouds. Because the radiative 

transfer model detects a warm surface instead of a cold cloud top, and vice versa, the 

brightness temperature differences are large. The first guess and the analysis errors in figure 3 

indicate that the WRF-produced clouds are shifted to southeast compared to the RAMS-

produced (i.e., “observed”) clouds. Also note (figures 1a and 1b), that the real clouds of the 
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cyclone Kyrill are generally in this area, however, there is a shift with respect to the clouds 

obtained by any of the two models.  The large differences in figure 3 (especially the negative 

differences) were reduced due to data assimilation; in the experiment with cloud ice 

adjustment (figure 3c) the model is in better agreement with the “observations” than in the 

experiment without cloud ice adjustment (figure 3b). These results indicate that the cloud ice 

adjustment has a more effective impact on improving the analysis than the potential 

temperature adjustment. 

Finally, we show in figure 4a the cloud ice analysis increments at 600 hPa obtained in 

the experiment with the cloud ice adjustment, and in figures 4b and 4c, a quantitative measure 

of the amount of information of the assimilated observations, called The Degrees of Freedom 

for Signal, or DFS (Eq. 6), obtained in the experiments without and with cloud ice adjustment. 

We present the 600 hPa level as an example of cloud ice increments. Similar increments were 

obtained at other higher altitude levels, where the amount of cloud ice was non-negligible. We 

can see, in figure 4a, that the analysis increments, ranging from -0.1 g kg
-1 

to 1.5 g kg
-1

, are 

present in central and southeastern Europe, in the area of large disagreement between the 

model and observations. We do not see analysis increments in the northern Mediterranean 

region because the 600 hPa temperature is above freezing, preventing cloud ice to form. We 

can also see, by comparing figures 4b and 4c, that introduction of cloud ice to the control 

variable results in significantly increased information content of the assimilated observations, 

even though the same observations were assimilated in both experiments. This is an indication 

that the appropriate control variable must be chosen in order to extract more information from 

the same observations. 

Note that the DFS, shown in figures 4b and 4c, have blocky structures. The DFS are 

calculated as total numbers of DFS over each of 25 local domains (blocks), which are the 

same local domains used for covariance localization (explained in Section 2b). Even though 

the information measures could be calculated for each model grid point (and the blocky 

structures would disappear), we calculated them over the local domains, thus to measure the 

information content contained in each local domain.  

In summary, the results presented in figures 2-4 demonstrate that adjusting cloud ice is 

of substantial importance for assimilation of the 10.35 µm radiances, in cases when cloud ice 

is present at the cloud tops. These results also indicate that excluding cloud ice from the 

control variable results in unrealistic changes to the remaining components of the control 

variable (e.g., potential temperature), since these remaining components could never account, 

in a physically correct way, for the effect of the cloud ice. This finding confirms indications 

from earlier studies (e.g., Smith et al. 1992; Grasso and Greenwald 2004; Grasso et al. 2008) 

that the 10.35 µm channel should be sensitive to cloud ice. For example, in Grasso and 

Greenwald (2004), it was demonstrated that the 10.35 µm channel should be most sensitive to 

the hydrometeors at the top of the thunderstorm. Since the top of the thunderstorm mostly 

contains the cloud ice particles (also called pristine ice), the 10.35 µm channel basically 

measures the cloud ice in this case. More generally, the results shown in figures 2-4 indicate 

that it is imperative to include all radiatively active hydrometeors into the control variable for 

maximizing the benefits of assimilated cloudy radiances and to avoid obtaining degraded data 

assimilation results due to neglecting some of the important hydrometeors. On the other hand, 

including microphysical variables to which the radiances have little sensitivity (e.g., rain or 

graupel) had negligible impact on data assimilation, thus these variables could be either 

included or excluded from the control variable. In the experiments presented in the remainder 
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of this paper, we keep all initially selected microphysical variables (potential temperature, 

specific humidity, cloud water, cloud ice, rain, snow and graupel) as components of the 

control variable.  

 

b. Data assimilation experiments over multiple data assimilation cycles 

 

In figure 5, we present the Root Mean Square (RMS) errors of the analysis and the first guess, 

calculated with respect to the RAMS-simulated 10.35 µm radiances, as functions of data 

assimilation cycles.  For reference, the RMS errors of the experiment without data 

assimilation are also included in figure 5. As seen in figure 5, both the analysis and the first 

guess are in better agreement with the “truth” than the experiment without data assimilation. 

Furthermore, the analysis indicates clear improvements with respect to the first guess, and the 

ensemble size of 48 members has smaller errors than the ensemble size of 16 members. The 

errors in both data assimilation experiments (with 16 and 48 members) generally decrease 

with time until around cycle 12, when they saturate at a certain level (with the exceptions of 

increasing errors from cycle 8 to cycle 12 in some experiments). Note that the errors also 

decrease, at a slower rate, in the experiment without data assimilation. This is because the 

influence of the horizontal boundary conditions becomes more dominant with time. Since the 

same NCEP analyses  [from the Gridpoint Statistical Interpolation (GSI) system, Wu et al. 

2002] were used to create boundary conditions for both WRF and RAMS, the differences 

between the two models decrease with time, and consequently the differences between the 

WRF-simulated and the RAMS-simulated (i.e., “observed”) radiances decrease too. In 

summary, figure 5 indicates a positive impact of data assimilation of the 10.35 µm synthetic 

radiances on the analysis and short term forecast and a positive impact of the increased 

ensemble size, over 17 data assimilation cycles. We have not run data assimilation 

experiments beyond 17 data assimilation cycles since the analysis and forecast errors 

saturated around cycle 12 in all experiments.  

We also show, in figure 6, the histogram of error distributions for the data assimilation 

experiment with 48 ensemble members and the experiment without data assimilation. By 

comparing the results from cycles 1 and 7, shown in panels (a) and (b), respectively, we can 

see that the errors are clustering around zero in the later cycle (i.e., cycle 7), indicating 

improvements in the first guess, the analysis and the no assimilation experiment. The errors 

from the analysis and the first guess cluster more around zero than the errors of the 

experiment without assimilation (note outliers in the positive errors for the no assimilation 

case). These results confirm a positive impact of data assimilation on the analysis and short-

term forecast improvements. 

 

One can also see in figures 6a, b that the errors follow a Gaussian distribution 

reasonably well. This is an indication that the commonly used assumption about Gaussian 

errors (and also used in this study) is reasonable in this case. Note, however, that cloudy 

satellite radiances could often depart from Gaussian distribution (e.g., could follow log-

normal distribution: cf. Grasso et al. 2009). In such cases a different cost function needs to be 

minimized as proposed in Fletcher and Zupanski (2006a, b). 

 We now examine whether the actual analysis errors are in agreement with the 

estimated analysis uncertainty. Examples of difference fields, calculated between the model-

simulated radiances and the “observed” radiances at 10.35 µm and the corresponding analysis 
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uncertainty σ obs

a (Eq. 7) are shown in figures 7 and 8. The differences are plotted for data 

assimilation cycle 7, valid at 1900 UTC 18 Jan 2007, and they correspond to the experiment 

without assimilation (i.e., old forecast, figure 7a), the first guess (1-h forecast after data 

assimilation, figure 7b) and the analysis (figure 7c). As indicated before, there are large 

discrepancies between the model and the “observations” in areas over the Alps, the northern 

Mediterranean and southeastern Europe. These discrepancies remain relatively large 

throughout the entire period (17 data assimilation cycles); however, they are decreasing with 

time in both experiments (with and without data assimilation), as the RMS errors in figure 5 

indicate. Nevertheless, we can still see a pronounced dipole of positive-negative differences 

[with maxima exceeding -0.06 or +0.05 W m
-2 

sr
-1 

cm] extending over the Alps, the northern 

Mediterranean and southeastern Europe in figure 7a (experiment without data assimilation). 

The impact of data assimilation is to significantly reduce the magnitudes of the large 

differences for the first guess (figure 7b) and to a lesser extent the analysis (figure 7c). Note, 

however, that the large differences still remain in this area and they appear in some additional 

areas (e.g., over the northern part of the Pyrenean peninsula).  Due to the non-identical twins 

setup we do not expect that the differences should eventually become negligible throughout 

the entire model domain, as they would in the identical twins setup. We do expect, however, 

that the method should be able to assign realistic (i.e., large) uncertainties to the points where 

these differences are large.  

As we can see in figure 8a, the analysis uncertainty is generally larger in the areas 

where the analysis-minus-observations differences are larger (in figure 7c). We can also see 

that the magnitudes of the analysis errors are in good agreement: for example, there are areas 

of large analysis errors, exceeding ±0.04 W m
-2 

sr
-1 

cm, in figure 7c (e.g., Alpine region, 

northern Mediterranean, southeastern and northeastern Europe), and the estimated analysis 

uncertainty is generally in the range 3.5-5 W m
-2 

sr
-1 

cm in these areas. These results confirm 

that the LMLEF calculated analysis uncertainty is a good estimate of the actual analysis errors 

in terms of both the magnitude and structure of the errors. In figure 8b we show an 

information measure, DFS (Eq. 6), calculated in data assimilation cycle 7.  As the figure 

indicates, areas (i.e., blocks) with large values of DFS generally coincide with the large 

analysis uncertainty in figures 7c and 8a. The results shown in figures 8a and 8b confirm the 

flow-dependent character of the analysis error covariance and the information measures, 

because the analysis errors and the information measures follow flow characteristics of the 

Kyrill cloud system. Flow-dependent analysis and forecast error covariance matrices are 

considered important ingredients of advanced data assimilation systems. 

Let us now examine the vertical cross section taken along the line AB (the location of 

the cross section is shown in figures 7 and 8). As seen in figure 7, the cross section is taken in 

the area where the differences between the model and the “observations” are large and they 

also change sign within the cross section. The analysis uncertainty and the information 

measure (DFS) are also large in this area (see figure 8). We present the vertical cross section 

of potential temperature and cloud ice in figure 9, including “observations” and model results. 

We can see that the model-produced potential temperature is generally colder in the lower 

levels compared to the “observations”, and the opposite is true for the upper levels.  We also 

see large differences between the modeled and the “observed” cloud ice in both the 

magnitudes and the locations of the maximum values. These differences, even though large, 

are reasonable: we are comparing two different forecast models, which have different 

dynamical cores and microphysical schemes. Nevertheless, the impact of data assimilation 
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should be in reducing, to some extent, these large differences. By comparing the experiment 

without data assimilation (figure 9b) with the 1-h first guess forecast initialized by data 

assimilation (figure 9c) and the analysis (figure 9d) we can see that the impact of data 

assimilation is relatively small on the potential temperature, but quite pronounced on the 

cloud ice. For example, the maximum of the cloud ice has moved westward in the first guess 

forecast (figure 9c) and the analysis (figure 9d), which is in better agreement with the 

“observations” (figure 9a) than the maximum obtained in the experiment without data 

assimilation (figure 9b). Additionally, the vertical structure of the cloud ice is in generally 

better agreement with the “observations” for the analysis as compared to the first guess, which 

is evidence of the analysis improvement with respect to the first guess. In conclusion, the 

impact of data assimilation is seen in more significant changes (which were also in the right 

direction) in the cloud ice than in the potential temperature. These results are reasonable, since 

the 10.35 µm radiance is expected to be more sensitive to the cloud ice than to any other 

microphysical variable under the conditions of this experiment (also confirmed in Grasso and 

Greenwald 2004 for a similar window channel of 10.7 µm). 

 

7. Conclusions 

 

In this study we assimilated synthetic GOES-R ABI radiances at 10.35 µm in cloudy 

conditions to evaluate the potential impact of these observations on improving model-

simulated clouds. In particular, we were interested in extracting maximum information from 

such observations by taking into account when and where this information is needed the most. 

Our criteria for defining when and where the information is needed the most were based on 

information theory and the use of information measures (such as DFS). We have performed 

cycled data assimilation experiments for the case of the extratropical cyclone Kyrill. This case 

was especially challenging because of the large errors in model-simulated radiances due to 

spatially shifted clouds. 

 The experimental results indicated that the same GOES-R observations could bring 

varying amounts of information, depending on the choice for the control variable in data 

assimilation. When cloud ice was included into the control variable, the information content 

of data, as measured by DFS, was significantly increased and the data assimilation results 

were much improved compared to the case without including cloud ice into the control 

variable. The impact of data assimilation was also seen in much more significant changes to 

the cloud ice than to other model state variables, such as potential temperature. This is not 

surprising, since the 10.35 µm channel is expected to be sensitive to the hydrometeors at the 

cloud top, but not sensitive to the air temperature or potential temperature (e.g., Smith et al. 

1992; Grasso and Greenwald 2004). Therefore, our results indicated that it is imperative to 

include all radiatively active hydrometeors into the control variable for maximizing the 

benefits of assimilated cloudy radiances and to avoid obtaining degraded data assimilation 

results due to neglecting some of the important hydrometeors. On the other hand, 

microphysical variables to which the radiances have little sensitivity (e.g., rain or graupel) 

could be either included or excluded from the control variable. 

The data assimilation and short term forecast results over multiple data assimilation 

cycles have clearly indicated improvements due to assimilation of the GOES-R ABI radiance 

“observations”, compared to the experiment without data assimilation. The experimental 

results also indicated that the flow-dependent DFS used in this study realistically reflect the 
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actual forecast uncertainty: the values of DFS were the largest in the areas of largest forecast 

errors. This is a confirmation that the data assimilation method used in this study has the 

capability to maximize information content of the assimilated observations.  

In future work, we plan to further evaluate the capability of the LMLEF approach, and 

the ensemble-based data assimilation methods in general, to extract maximum information 

from real satellite observations. For this purpose we plan to assimilate cloudy radiances 

similar to the future ABI radiances (e. g., from the METEOSAT Second Generation – MSG 

and/or the Atmospheric Infrared Sounder – AIRS instruments).  

 

Appendix: Basic equations of the MLEF 

 

The MLEF seeks a maximum likelihood solution of the posterior Probability Density 

Function (PDF), which is equivalent to seeking a minimum of the following cost function 

(under the standard assumption of Gaussian PDFs for the observation and forecast errors) 

 

 
J(x) =

1

2
x − x

f( )T Pf

−1
x − x

f( )+ 1

2
y − H (x)[ ]T R

-1
y − H (x)[ ] .    (1) 

 

The cost function (1) measures the differences between the model and the observations, where 

vector y of dimension Nobs (number of observations) is the observation vector, vector x of 

dimension NS (model state dimension) is the model state vector, non-linear operator H is an 

observation operator, matrix R is the observation error covariance and matrix fP is the forecast 

error covariance. The index f refers to the forecast (used as a first guess). The matrix fP is 

defined in a subspace spanned by ensemble forecast perturbations as 

 

  
Pf

1/2 = p1

f
p2

f ⋅   ⋅ pNE

f  pi

f = M (x
a + pi

a ) − M (x
a )  ,   (2) 

 

where M denotes the nonlinear forecast model, the superscript a refers to the analysis, and 

NE is the number of ensembles. The vectors pi

a and pi

f  represent columns of the square roots 

of the analysis and forecast error covariances, respectively. The square root of the analysis 

error covariance is defined at the analysis solution  x
a as 

 

 
Pa

1/2 = Pf

1/ 2 INE
+ Z(xa )( )T Z(xa )





−1/2

 ,       (3) 

 

where 
 
INE

 is an NE × NE  identity matrix and the matrix  Z(xa ) is the observation perturbation 

matrix at the analysis solution, defined by the following equation 

 

 
Z(xa ) = z1(xa ) z2 (xa ) ⋅ ⋅ zNE

(xa )  zi (x
a ) = R

−1/2
H (x

a + pi

f )-H (xa )  . (4) 

 

The inverse square root calculation in (3) is obtained via eigenvalue decomposition of the 

matrix 
 
INE

+ Z(xa )T
Z(xa ) . It is calculated as a symmetric square root, which is unique (e.g., 

Wang et al. 2004; Zupanski 2005; Wei et al. 2006). 
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 We also calculate, as a diagnostic, the so-called information matrix C, of dimensions 

NE × NE , defined in ensemble subspace as 

 

 C = Z(xa )T Z(xa )  ,          (5) 

 

which we use to calculate information measures, such as Degrees of Freedom for Signal 

(DFS) defined as (e.g., Shannon and Weaver 1949; Rodgers, 2000; Zupanski et al., 2007) 

 

DFS =
λi

2

(1+ λi

2 )i=1

NE

∑  ,          (6) 

 

where index i denotes an ensemble member and 2

iλ are eigenvalues of the information matrix 

C. 

As an additional diagnostic, we also calculate analysis uncertainty in observation 

locations and in terms of the observed variable (10.35 µm radiance in the experiments 

presented) to be able to compare it with the actual analysis uncertainty, defined by the 

differences between the analysis and the “truth” (the “truth” being defined by a different 

forecast model in our “non-identical twins” experimental setup). The analysis uncertainty, 

defined as the standard deviation of the analysis errors (σ obs

a ), is calculated using the 

following formula  

 

σ obs

a = diag R1 2G xa( )G xa( )T RT 2



{ }1 2

,       (7) 

 

where the Nobs × NE matrix G consists of column perturbation vectors gi (x
a ) defined by: 

 

 
G(xa ) = g1(xa ) g2 (xa ) ⋅ ⋅ gNE

(xa )  gi (x
a ) = R

−1/2
H (x

a + pi

a )-H (xa )  . (8) 

 

Note similarity between equations (8) and (4): the only difference is that for calculating 

matrix G the analysis perturbations  pi

a  are used, while for matrix Z the forecast perturbations 

 pi

f are employed. Note also that both the forecast perturbation vectors zi (x
a )  and the 

analysis perturbation vectors gi (x
a )  are calculated using non-linear observation operators 

H, in accordance with the non-linear character of the MLEF algorithm.  

 

 The equations (1) – (6) are solved employing an iterative minimization (Zupanski 

2005). In addition, as demonstrated in Zupanski et al. (2008), assumptions of differentiability, 

used in the standard gradient-based minimization methods, were not necessary, thus this 

approach is considered adequate for non-linear and discontinuous cloud microphysical 

processes, which play an important role in the experiments of this study. 
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Figure captions 

 

Figure 1. METEOSAT infrared satellite imagery of Kyrill, from 18 January 2007 at (a) 1212 

UTC, and (b) 1912 UTC. 

 

Figure 2. Potential temperature at 850 hPa and the corresponding analysis increments (i.e., 

differences between the analysis and the first guess), obtained in the experiments without and 

with cloud ice adjustment. The first guess (1-h forecast) is shown in (a), the analysis without  

cloud ice adjustment is plotted in (b) and the analysis with cloud ice adjustment is given in 

(c). The corresponding analysis increments are shown in (d) and (e) for the experiments 

without and with cloud ice adjustment, respectively.  

 

Figure 3. Differences calculated between the model-simulated and the “observed” 10.35 µm 

radiances for (a) the first guess forecast, (b) the analysis without cloud ice adjustment and (c) 

the analysis with cloud ice adjustment. The differences correspond to the end of the first data 

assimilation cycle (1300 UTC 18 Jan 2007). Units for radiances are W m
-2 

sr
-1 

cm. 

 

Figure 4. (a) Cloud ice analysis increments (in units of g kg
-1

) at 600 hPa level obtained in the 

experiment with the cloud ice adjustment in the first data assimilation cycle (1300 UTC 18 

Jan 2007). Information content of the assimilated observations (DFS, Eq. 6) calculated in the 

same data assimilation cycle is shown for the experiment without cloud ice adjustment in (b) 

and for the experiment with cloud ice adjustment in (c). The DFS in (b) and (c) are non-

dimensional quantities, which count the total number of independent pieces of information per 

local domain (block).  

 

Figure 5. RMS errors of the analysis (ANL, dashed lines) and the first guess (FG, solid lines) 

calculated with respect to the RAMS-simulated 10.35 µm radiances and plotted as functions 

of data assimilation cycles.  Results from the experiments with 16 and 48 ensemble members 

are shown. For reference, the RMS errors of the experiment without data assimilation 

(NO_OBS, solid line) are also included. Units for radiances are W m
-2 

sr
-1 

cm. 

 

Figure 6. Probability histogram of the errors of the 10.35 µm radiances, calculated with 

respect to RAMS-simulated radiances, for the first guess (FG), the analysis (ANL) and the 

experiment without assimilation (NO_OBS). Data assimilation experiments using ensemble 
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size of 48 members are shown. Results from first (a) and seventh (b) data assimilation cycle 

are presented. Units for radiances are W m
-2 

sr
-1 

cm. 

 

Figure 7. Differences, corresponding to the end of the seventh data assimilation cycle (1900 

UTC 18 Jan 2007), calculated between the model-simulated the “observed” 10.35 µm 

radiances are plotted for (a) the experiment without data assimilation (i.e., old forecast), (b) 1-

h forecast used as a first guess in data assimilation, and (c) the analysis. The units for 

radiances are W m
-2 

sr
-1 

cm. Line AB indicates location of the vertical cross section shown in 

figure 9. 

 

Figure 8. Analysis uncertainty for the 10.35 µm radiances (σ obs

a , Eq. 7) is plotted in (a) and 

the corresponding DFS (Eq. 6) is shown in (b). The results are given for the seventh data 

assimilation cycle, thus are comparable to the results in figure 7. The units for radiances are 

W m
-2 

sr
-1 

cm, however the values are scaled by 100.  

 

Figure 9. Vertical cross section taken along the line AB shown in figures 7 and 8. Potential 

temperature (shading) and cloud ice (contours) are shown in the figure. The results are valid at 

the end of seventh data assimilation cycle (1900 UTC 18 January 2007). The “observations” 

(RAMS forecasts) are given in panel (a), the forecast results from the experiment without 

assimilation are shown in (b), the 3-h background in (c) and the analysis in (d). Units for 

potential temperature are K and for cloud ice g kg
-1

. 
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Figure 1. Meteosat infrared satellite imagery of Kyrill, from 18 January 2007 at (a) 1212 UTC, and (b) 

1912 UTC 

(a) 

(b) 
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Figure 2. Potential temperature (K) at 850 hPa and the corresponding analysis increments (i.e., 

differences between the analysis and the first guess), obtained in the experiments without and with cloud 

ice adjustment. The first guess (1-h forecast) is shown in (a), the analysis without cloud ice adjustment is 

plotted in (b) and the analysis with cloud ice adjustment is given in (c). The corresponding analysis 

increments are shown in (d) and (e) for the experiments without and with cloud ice adjustment, 

respectively.  

 

(e) 
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(c) 

Figure 3. Differences calculated between the model-simulated and the “observed” 10.35 µm radiances 

for (a) the first guess forecast, (b) the analysis without cloud ice adjustment and (c) the analysis with 

cloud ice adjustment. The differences correspond to the end of the first data assimilation cycle (1300 

UTC 18 Jan 2007). The units for radiances are W m
-2 

sr
-1 

cm. 
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(c) 

Figure 4. (a) Cloud ice analysis increments (in units of g kg
-1

) at 600 hPa level obtained in the 

experiment with the cloud ice adjustment in the first data assimilation cycle (1300 UTC 18 Jan 2007). 

Information content of the assimilated observations (DFS, Eq. 6) calculated in the same data assimilation 

cycle is shown for the experiment without cloud ice adjustment in (b) and for the experiment with cloud 

ice adjustment in (c). The DFS in (b) and (c) are non-dimensional quantities, which count the total 

number of independent pieces of information per local domain (block).  
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Figure 5. RMS errors of the analysis (ANL, dashed lines) and the first guess (FG, solid lines) calculated 

with respect to the RAMS-simulated 10.35 µm radiances and plotted as functions of data assimilation 

cycles.  Results from the experiments with 16 and 48 ensemble members are shown. For reference, the 

RMS errors of the experiment without data assimilation (NO_OBS, solid line) are also included. Units 

for radiances are W m
-2 

sr
-1 

cm. 
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Figure 6. Probability histogram of the errors of the 10.35 µm radiances, calculated with respect to 

RAMS-simulated radiances, for the first guess (FG), the analysis (ANL) and the experiment without 

assimilation (NO_OBS). Data assimilation experiments using ensemble size of 48 members are shown. 

Results from first (a) and seventh (b) data assimilation cycle are presented. Units for radiances are W 

m
-2 

sr
-1 

cm. 
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(c) 

Figure 7. Differences, corresponding to the end of the seventh data assimilation cycle (1900 UTC 18 

Jan 2007), calculated between the model-simulated  and the “observed” 10.35 µm radiances are plotted 

for (a) the experiment without data assimilation (i.e., old forecast), (b) 1-h forecast used as a first guess 

in data assimilation, and (c) the analysis. The units for radiances are W m
-2 

sr
-1 

cm. Line AB indicates  

the location of the vertical cross section shown in figure 9. 

A B 
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Figure 8. Analysis uncertainty for the 10.35 µm radiances (σ obs

a , Eq. 7) is plotted in (a) and the 

corresponding DFS (Eq. 6) is shown in (b). The results are given for the seventh data assimilation 

cycle, thus are comparable to the results in figure 7. The units for radiances are W m
-2 

sr
-1 

cm, 

however the values are scaled by 100.  
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(c) 

(d) 

Figure 9. Vertical cross section taken along the line AB shown in figures 7 and 8. Potential 

temperature (shading) and cloud ice (contours) are shown in the figure. The results are valid at the 

end of seventh data assimilation cycle (1900 UTC 18 January 2007). The “observations” (RAMS 

forecasts) are given in panel (a), the forecast results from the experiment without assimilation are 

shown in (b), the 3-h background in (c) and the analysis in (d). Units for potential temperature are 

K and for cloud ice g kg
-1

. 
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