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Abstract 

Previous work—in which Advanced Microwave Sounding Unit (AMSU) data from the 

Atlantic and east Pacific basins during 1999–2001 were used to provide objective estimates of 1-

min maximum sustained surface winds, minimum sea level pressure, and the radii of 34-, 50-, 

and 64-kt (1 kt ≡ 0.5144 m s-1) winds in the northeast, southeast, southwest, and northwest 

quadrants of tropical cyclones—is updated to reflect larger datasets, improved statistical analysis 

techniques, and improved estimation through dependent variable transforms. A multiple 

regression approach, which utilizes best-subset predictor selection and cross validation, is 

employed to develop the estimation models where the dependent data (i.e., maximum sustained 

winds, minimum pressure, wind radii) are from the extended best-track, and the independent data 

consist of AMSU-derived parameters that give information about retrieved pressure, winds, 

temperature, moisture, and satellite resolution. The developmental regression models result in 

mean absolute errors (MAE) of 10.8 kt and 7.8 hPa for estimating maximum winds and 

minimum pressure, respectively. The MAE for the 34-, 50-, and 64-kt azimuthally averaged 

wind radii are 16.9, 13.3, and 6.8 n mi (1 n mi ≡ 1.8519 km), respectively.  
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1. Introduction 

The utility of satellite-based microwave remote sensing for observation and analysis of 

tropical cyclones (TC) has blossomed in the past decade because of the ability of microwave 

instruments to provide vertical profiles of TC parameters as well as useful details about the 

distribution of water vapor and deep convection. Moreover, the satellite-based data provide good 

global spatial coverage of the tropical regions. More details on the benefits of using microwave 

remote sensing for observing and analyzing TCs, including a brief description of several studies 

which do so, can be found in Demuth et al. 2004 (hereafter referred to as D04).  

D04 capitalized on the efficacy of passive microwave remote sensing for observing TCs 

by using the Advanced Microwave Sounding Unit (AMSU), the follow-on to the Microwave 

Sounding Unit. For more details of the AMSU instrument and its use for TC applications, see 

Kidder et al. (2000), Knaff et al. (2000), Spencer and Braswell (2001), Brueske and Velden 

(2003), Knaff et al. (2004), and Bessho et al. (2006). D04 used AMSU-derived data from 1999–

2001 to develop algorithms that provide objective estimates of intensity (i.e., 1-min maximum 

sustained winds [MSW] and minimum sea level pressure [MSLP]) and wind structure (i.e., radii 

of 34-, 50-, and 64-kt winds [1 kt ≡ 0.5144 m s-1) for TCs in the Atlantic and East Pacific basins. 

The sample size consisted of 473 cases (i.e., passes over a TC) for the intensity estimation 

models and 129, 92, and 68 cases for the models estimating the 34-, 50-, and 64-kt wind radii, 

respectively.  

The work by D04 has since been updated by developing a much larger, more 

representative, global set of data with TCs from the Atlantic, East Pacific, West Pacific, and 

Central Pacific basins as well as from the Indian Ocean and Southern Hemisphere. In addition, 

new potential estimative parameters were created based on transformations of original AMSU-
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derived parameters. Finally, improved statistical model analysis and selection procedures were 

implemented to define the best possible estimation models. These modifications, improvements, 

and the resulting new models for estimating TC intensity and wind structure using AMSU data 

are described in the following sections. Only the necessary information and modifications are 

presented here, so the reader is referred to D04 for all the details of the methods not discussed in 

this follow-up.  

 

2. Data and Methods 

a. Data 

The specifics of how the AMSU data are collected and processed and of the temperature 

and wind retrievals can be found in D04. For this work, data were collected from the AMSU 

instruments aboard the National Oceanic and Atmospheric Administration (NOAA)-15, -16, and 

-17 satellites. NOAA-15 data were available from 1999 through 2004, NOAA-16 data from 2001 

through 2004, and NOAA-17 data from January through late October 2003. The NOAA-17 

temperature profile data are unavailable after October 2003 because the AMSU-A instrument 

failed. Likewise, two stratospheric channels (i.e., Channels 11 and 14) have failed on the AMSU 

instrument aboard NOAA-15, but accommodating corrections to the temperature retrieval 

algorithm were made. The retrieval was limited to those cases in which the TC center fell within 

700 km of the AMSU swath center. Previously, a threshold of 600 km was used, but that limit 

was increased to 700 km in order to increase the number of cases for testing. The increase of this 

threshold resulted in no degradation of these algorithms. This constraint resulted in AMSU cases 

being an average of less than 17 hours apart when only one NOAA satellite was available 

(during 1999 and 2000), 10−11.5 hours apart when two NOAA satellites were available (during 

B-4
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2001, 2002, and 2004), and approximately 8.5 hours apart when three NOAA satellites were 

available (during 2003).  

In addition to D04’s earlier work, in which the AMSU data were collected for all Atlantic 

and East Pacific TCs from 1999–2001, three more years of data (i.e., from 2002–04) were 

acquired, for a complete dataset ranging from 1999–2004. AMSU data also were collected for 

TCs in the Central Pacific and Indian Ocean from 2003–04, and in the West Pacific and Southern 

Hemisphere from 2002–04.  

Acquisition of these new data results in 2637 and 2624 cases for estimating the MSW and 

MSLP, respectively, more than quintuple the size of D04’s previous dataset for intensity 

estimation. The distribution of cases by basin (Figure 1) shows that approximately one-third of 

the cases are from the Atlantic basin, one-third are from the West Pacific basin, and the 

remaining one-third are from the other four basins combined. These new data provide 45 cases at 

the Category 5-level (> 135 kt) compared to D04, where there were no AMSU passes over a TC 

while it was of Category-5 intensity. As will be described in more detail in the next subsection, 

the new wind radii datasets were restricted to cases with coincident reconnaissance, leaving 255 

cases for the 34-kt winds, 170 cases for the 50-kt winds, and 120 cases for the 64-kt winds. 

These recon-based sample sizes are nearly double the dataset from D04’s previous work, in 

which the wind radii datasets were developed using only Atlantic cases west of 55°W—a 

restriction imposed because of the higher likelihood of having in situ measurements in that 

region—as well as Atlantic and East Pacific cases with reconnaissance. 

  

b. Methods 
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The resolution of the AMSU data, which is 48 km at best, is too coarse to adequately 

resolve TC structure. Thus, parameters derived from the AMSU temperature, pressure, and wind 

retrievals are used to develop an empirically based statistical model for estimating TC intensity 

and winds in real time. As in D04’s earlier work, 18 AMSU-derived parameters serve as 

potential estimators along with the 2 non-AMSU-derived parameters, latitude (LAT) and the 

operational estimate of intensity (VMXOP) (Table 1); the latter parameter—the operational 

estimate of TC intensity—is used only for estimating the wind radii. In addition to these 20 

parameters, 4 additional estimators were added to the predictor pool (Table 1) to try to better 

estimate the stronger TCs—which the D04 algorithms typically do not estimate well because of 

the coarse horizontal resolution of the AMSU—and to better detect dissipating storms. Three of 

the new variables are transformations of other AMSU-derived variables. P600, or the surface 

pressure at a radius of 600 km, is not AMSU-derived; this information is determined from the 

National Centers for Environmental Prediction Global Forecast System model. P600 is used as a 

boundary condition for the AMSU pressure retrieval and, as such, is used to derive the minimum 

surface pressure (PMIN) and pressure drop at the surface (DP0), where P600=PMIN+DP0.  

The dependent data for the TC intensity and wind radii estimations are from National 

Hurricane Center (NHC), Joint Typhoon Warning Center, and Central Pacific Hurricane Center 

extended best-track1 data within 6 h of the AMSU swath time, linearly interpolated to the time of 

                                                 

1 The extended best-track data supplements standard best-track position and intensity data—which are determined 

from post-season analyses of all information available and are reported every six hours—with operational estimates 

of TC size parameters (e.g., radii of 34-, 50-, and 64-kt winds, radius of maximum winds). The extended best track 

was prepared by Mark DeMaria with partial support from the Risk Prediction Initiative. Both the best track and the 

advisories containing wind-radii information used to create the extended best track come from the databases 
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the swath. The 34-, 50-, and 64-kt wind radii datasets were restricted to cases that had a 

reconnaissance flight within 12 hours prior, because estimates of the wind radii can be grossly in 

error when in situ observations are not available. The intensity datasets were not restricted to 

cases with coincident reconnaissance, because best-track estimates of intensities, unlike wind 

radii, are reasonably accurate and that doing so would have resulted in a much smaller set of 

cases. Of that smaller dataset, the vast majority of cases are from the Atlantic basin, only a 

handful are from the East Pacific and West Pacific basins, and there are no cases from the 

Central Pacific, Indian Ocean, or Southern Hemisphere. Thus, the much larger, more 

representative dataset is preferred.  

1) INTENSITY ESTIMATION 

Two algorithms are developed using AMSU data to estimate intensity, one each for the 

MSW and the MSLP. Again, in attempt to better estimate the stronger storms, the dependent data 

for both the MSW and MSLP were transformed in several ways. The results indicated that the 

MSW are best estimated directly, with the MSW values as the dependent data. However, the 

MSLP are best estimated indirectly; the data first are subtracted from a set value of 1050 hPa, 

then an algorithm to estimate the natural log of that differenced value is developed, and finally 

the MSLP is re-obtained.  

To develop algorithms that estimate TC intensity, a best-subsets multiple linear 

regression (Miller, 2002) technique was employed. This technique examines all potential 

regression equation combinations up to some N number of variables. For example, if there were 

                                                                                                                                                             

maintained in the Automated Tropical Cyclone Forecast (Sampson and Schrader, 2000) databases at the National 

Hurricane Center and the Joint Typhoon Warning Center. Applications of the extended best track can be found in 

Kimball and Mulekar (2004).  
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three independent variables, the best-subsets technique would assess seven equations: three 

equations with single estimators, three equations with two estimators each, and one equation 

with all three estimators. The advantage of this method over an automated technique, such as 

stepwise regression, is that it allows the user to see the regression results from all possible 

models and to select the most appropriate model based on the user’s criteria. The best-subsets 

technique was combined with a cross-validation scheme to provide a more realistic assessment 

of the errors. To thoroughly evaluate the models, the regression equations were developed with 

80% of the cases, chosen randomly, and tested on the remaining 20% of the cases (Brieman and 

Spector, 1992). This 80/20 cross-validation procedure was conducted 1000 times for every 

possible model to ensure robust estimates of error.  

To develop the intensity estimation models, best-subsets were used to analyze all possible 

models having up to 15 independent variables. The evaluation criteria included (1) the 

minimization of the mean absolute error (MAE)—which has the same units as the dependent 

variable so that there is physical meaning to the errors—of both the developmental and the cross-

validated datasets, and (2) that all estimators are significant to 1% (α=0.01). Based on these 

results, the best models were chosen for estimating the MSW and MSLP.  

 

2) AZIMUTHALLY AVERAGED AND ASYMMETRIC WIND RADII ESTIMATION 

As in D04’s previous work, the azimuthally averaged wind radii of 34-, 50-, and 64-kt 

winds are estimated in a manner similar to the intensity estimation. The averaged wind radii 

values then were used in conjunction with a simple wind model—a modified Rankine vortex 

plus a vector proportional to TC motion—to estimate the asymmetric wind structure in terms of 

the wind radii in the northeast (NE), southeast (SE), southwest (SW), and northwest (NW) 
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quadrants of the TC. A complete discussion of the asymmetric wind radii estimation methods 

can be found in D04. The one difference, however, is that the dependent data for the azimuthally 

averaged dataset were established by averaging only the quadrants for which non-zero wind radii 

existed in the extended best-track data; previously, D04 took the average of all four quadrants, 

including those for which no wind radii existed. Eliminating the quadrants with zero wind radii 

from the average removes noise from the data for cases where the maximum wind is close to the 

34-, 50-, or 64-kt wind radii threshold. In these cases, the wind radii in some quadrants rapidly 

vary between zero and non-zero values as a function of time.  

The algorithms that estimate the azimuthally averaged 34-, 50-, and 64-kt wind radii are 

developed with the same methods as the intensity estimation algorithms—that is, with a best-

subsets multiple linear regression combined with a cross-validation method that uses 80% of the 

data for developmental purposes and 20% of the data for testing, which is run 1000 times for 

each possible model. The evaluation criteria for the wind radii regressions are (1) the 

minimization of the MAE of the developmental and the cross-validated datasets, as with the 

intensity estimation models, and (2) that all estimators are significant to 5% (α=0.05). A less 

stringent significance level was used for the mean wind radii estimations than for the intensity 

estimations, because the smaller wind radii sample sizes made it difficult to achieve robust 

regression models with the more stringent significance level.  

 

3. Intensity Estimation Results 

The new regression equation for estimating MSW retains 12 variables and explains 

78.7% of the variance (R2), and an additional variable is retained for estimating MSLP, 
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explaining 80.2% of the variance (Table 2). Compared to D04, this is a 6.4% and 3.7% 

improvement in the R2, respectively.  

Seven parameters—DP0, TMAX, SS, RMX3, VBI5, CLWAVE, and CLWPER—defined 

the model used in D04 to estimate MSW and, with the addition of PMIN, to estimate MSLP. 

Those same seven variables are retained again, along with five additional variables (i.e., DP3, 

VMX3, VBO0, VBO3, and TMAX2), to estimate MSW (Table 2). For the estimate of MSLP, the 

same original seven variables and five new variables are retained, but P600 now is retained in 

place of PMIN (Table 2). As discussed earlier, P600 is a model-derived boundary condition used 

to determine PMIN and DP0, where P600 is the sum of those two parameters; thus, any 

combination of two of these three variables provides the same information. P600 was chosen in 

place of PMIN—even though the developmental regression results are the same for either 

parameter—because it is easier to understand that P600 provides information about the 

background pressure environment than the combination of PMIN and DP0.  

 In Table 2, the normalized coefficients are indicative of the relative weight each variable 

has in providing the TC intensity estimates. For each variable, the normalized coefficients for the 

MSW and MSLP models have similar magnitudes. This similarity should be expected because, 

as described previously, the MSLP variable is actually the log of the difference in the central 

pressure from 1050 hPa, so a larger value of MSLP indicates a stronger storm, similar to MSW. 

The physical interpretation of the normalized coefficients in Table 2 is complicated by the fact 

that the variables can interact with each other. For example, DP0 and DP3 have the largest 

coefficients, but opposite signs. Thus, it is really the difference between these two variables that 

is correlated with the intensity. The direct relationship with intensity comes from the TMAX 

(modified by TMAX2), VMX3 and VBI5 terms. A warmer core and stronger retrieved maximum 

A-1
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and average inner winds increase the intensity estimate. The effects of SS and RMX3 are 

smaller, but also have a direct physical interpretation. The intensity estimate in increased when 

SS is large (a correction for lower data resolution) and when RMX3 is smaller (more intense 

storms tend to have a smaller radius of maximum wind). The two moisture variables (CLWAVE 

and CLWPER) interact but increase the intensity when the CLW is generally higher. The 

remaining variables occur in pairs with opposite signs (DP0 with DP3 and VBO0 with VBO3) 

and are related to the vertical structure of the retrievals. These variables are probably providing 

additional corrections due to attenuation, which has a strong influence on the difference in the 

retrieved variables between vertical levels. The P600 variable increases the MSLP (which lowers 

the central pressure estimate) when the environmental pressure is low. 

The MAE and rmse for the new MSW estimation model from the developmental dataset 

are 10.8 and 14.0 kt, respectively. For the new MSLP model, the MAE is 7.8 hPa and the rmse is 

11.6 hPa. The errors stratified by TC intensity are given in Table 3. These data show that the 

AMSU intensity estimation algorithms work best on tropical storms (34–63 kt) and weak 

hurricanes (64–95 kt); they tend to overestimate the intensity of tropical depressions (< 34 kt); 

and they tend to underestimate the intensity of major hurricanes (≥ 96 kt), especially Category 5 

storms (> 135 kt). Looking only at the MSW estimation, the model tends to underestimate MSW 

during instances of rapid intensification (defined here as at least 30 kt within 24 hr). This 

occurred 23 times, and the MAE of these cases is 23.4 kt with a bias of -20.2 kt. This may be due 

to a lag in the AMSU detecting changes in the warm core (i.e., TMAX) or that the warming in 

the core is distributed differently within rapidly intensifying storms.  

B-4

An analysis of the errors for the MSW estimation stratified by the six basins and by 

intensity is shown in Table 4. The estimations for the Atlantic basin likely are of higher skill 

B-2
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because, of the 846 cases comprising the developmental dataset, 300 have coincident 

reconnaissance, resulting in a better developmental dataset.  In comparison, it is possible that the 

larger errors for stronger hurricanes in the East Pacific, Southern Hemisphere, and West Pacific 

may be largely due to fewer in situ observations in these basins.  There are also basin specific 

possibilities for these larger intensity errors.  The East Pacific TCs are notably smaller than those 

in other basins (Knaff et al. 2006, manuscript submitted to Wea. Forecasting), and Southern 

Hemisphere positional errors are larger because forecast advisories are issued every 12 h in that 

region, as opposed to every 6 h.  For the Central Pacific and Indian Ocean, the datasets are made 

up of very few cases, potentially making the error estimates less representative.  For example, 

there was only one hurricane in the Indian Ocean, so the 29.7 kt error shown in Table 4 is based 

on this case alone.      

When comparing the error statistics from the new intensity estimation models with those 

from D04, on the surface it appears as though the new models result in slightly greater errors 

(Table 5). However, testing the intensity estimation models from D04 on the new, more 

representative datasets provides a more direct assessment of the errors. Applying the MSW 

model from D04 to the new data results in MAE and rmse of 11.5 and 14.8 kt (Table 5) and 

applying the MSLP model results in errors of 8.9 and 13.1 hPa (not shown in Table 5), all of 

which are higher than the errors from the new models. These results are consistent when 

examining the errors stratified by TC intensity. A specific analysis of the Category 5 storms 

shows that the D04 model estimates of MSW are in error by an average of 4 kt more than the 

new MSW model estimate (MSLP by 15 hPa; not shown). Thus, the new intensity estimation 

models are better overall than the D04 models, and they are especially better at estimating 
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stronger TCs, in part because the new datasets include several cases of Category-5 intensity, 

whereas the D04 dataset had none.  

 

4. Wind Radii Estimation Results 

a. Azimuthally averaged wind radii 

Unlike the updated intensity estimation models, which employed all of the same 

estimative parameters as in D04, the revised azimuthally averaged wind radii estimation models 

differ considerably from the old versions. This probably is due to the previous datasets being less 

representative because of their smaller sample sizes and their not being comprised solely of cases 

coincident with reconnaissance data to ensure more accurate observations. As such, the new 

models are more robust, as is shown by their improved error statistics.  

The final regression equations for the 34- and 50-kt mean wind radii each retain 10 

variables, and the 64-kt mean wind radii equation retains 9 variables (Table 6). The normalized 

coefficients for the wind radii are more difficult to interpret physically than those for the 

intensity estimation because there is more interaction among the independent variables. The SS 

and RMX0 variables have a direct relationship, increasing the radii for large SS (resolution 

correction) and when RMX0 is large. The radii also increase for larger TMAX, although there is 

some interaction with CLWAVE for the 34-kt radii. This relationship probably represents the 

increase in storm radii when the storm becomes more intense. For the 50-kt radii, the 

combination of the VMXOP and TMAX terms represents this same effect. For the 64-kt radii, 

larger CLWPER values are related to larger radii; this might be expected, because larger storms 

tend to have larger cloud regions. The relationship with the CLW variables is more difficult to 

interpret for the 34- and 50-kt winds, because there is considerable interaction with other terms. 

A-1
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Similar to the intensity coefficients, there are several variables that have similar coefficients but 

opposite signs, which probably is related to attenuation effects. 

The mean 34-kt algorithm explains 78.4% of the variance, and it results in a MAE of 16.9 

n mi and a rmse of 21.4 n mi (1 n mi ≡ 1.8519 km). For the mean 50-kt wind radii, 78.2% of the 

variance is explained, and the MAE and rmse are 13.3 and 17.3 n mi, respectively. Finally, the 

mean 64-kt wind radii algorithm explains 86.4% of the variance and results in MAE and rmse of 

6.8 and 8.9 n mi, respectively. The improved errors from the updated models compared to the 

models from D04 are shown in Table 7.  

 

b. Asymmetric wind radii 

The improved azimuthally averaged wind radii estimates lead to improved estimates of 

the wind radii in the NE, SE, SW, and NW quadrants of the TC. Figure 2 shows the MAE of 

each wind radii by quadrant based on the revised models and the D04 models. Although there are 

only slight improvements in the NE quadrant—which averages the largest wind radii of all four 

quadrants for all three wind thresholds—the radii in the other three quadrants improve 

substantially.  

 

5. Summary and Conclusions 

This research was a follow-on to previous work conducted by Demuth et al. (2004) to 

improve the estimation of tropical cyclone intensity (i.e., in terms of the maximum sustained 

winds and minimum sea level pressure) and wind structure (i.e., in terms of the radii of 34-, 50-, 

and 64-kt winds in the northeast, southeast, southwest, and northwest quadrants of the storm) 

using parameters derived from AMSU data. In their original work, Demuth et al. only had data 
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from tropical cyclones in the Atlantic and East Pacific basins from 1999 through 2001 on which 

to develop their algorithms. An additional 3 years of data, as well as data from tropical cyclones 

in the Central and West Pacific basins, Indian Ocean, and Southern Hemisphere, provide a much 

larger and more representative sample set. The added data more than quintupled the prior dataset 

for intensity estimation. The mean wind radii datasets, which are twice as large as before, are 

based entirely on cases coincident with aircraft reconnaissance within 12 hours prior. Moreover, 

the mean wind radii were calculated without averaging quadrants with zero wind radii, 

improving the mean radii estimates which, in turn, improves the asymmetric wind estimates. The 

intensity and azimuthally averaged wind structure estimation models were developed using a 

best-subsets technique, which analyzes all possible combinations of up to 15 independent 

variables. Every model was cross-validated 1000 times by using 80% of the cases, randomly 

chosen, for development and using the remaining 20% of the cases for testing. Overall, the larger 

datasets and modified methods result in superior estimates of intensity, especially for stronger 

TCs, and wind structure when compared to D04.  

These revised algorithms were transitioned to operations at the National Hurricane 

Center/ Tropical Prediction Center (NHC/TPC) during 2005, where they will provide objective, 

and independent TC intensity estimates.  The results generated at NHC will be provided to all 

U.S. operational tropical cyclone forecast centers using data from the NOAA-15, -16, and -18 

satellites. Currently, there are no plans to revise these algorithms further using AMSU data. 

However, a new NOAA satellite system, NPOESS (National Polar-orbiting Operational 

Environmental Satellite System), is slated for launch in 2009. On NPOESS will be the Cross-

track Infrared Sounder (CrIS) and the Advanced Technology Microwave Sounder (ATMS). 
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Denoted jointly as CrIMSS, this sensor suite will provide global profiles of temperature, 

moisture, and pressure, which could be used for future TC applications.  
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Figure 1. Distribution of tropical cyclone cases by basin for the intensity estimation datasets. 

Shown is the dataset for MSW, with n=2637 cases. For MSLP, with n=2624 cases, only the 

Atlantic and east Pacific distributions are different, with 31.9% and 25.2%, respectively.  

 

Figure 2. Comparison of MAE for asymmetric 34-, 50-, and 64-kt wind radii between revised 

algorithms (new) and D04 algorithms (old). The concentric circles represent increasing error 

from the center of the graph at five-n mi increments. 
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Table 1. Potential estimators of tropical cyclone intensity and wind radii. The radius is denoted 

by r, where r=0 km is the storm center, and z is height. Except for the area-averaged CLWPER, 

all AMSU-derived parameters are azimuthally averaged.  

 

Table 2. Regression variables and statistics for estimating MSW (kt) and MSLP (hPa). For all the 

independent variables, the p-value = 0.00000. The seven variables in bold were used to estimate 

MSW and MSLP in D04. The other variable used to estimate MSLP in D04 was the AMSU-

derived minimum pressure (PMIN), which is replaced here by P600. 

A-2

 

Table 3. Error statistics for the estimates of MSW and MSLP, stratified by tropical cyclone 

intensity. The statistics for the hurricane-strength storms are shown all together, and stratified by 

the categorical intensity based on the Saffir-Simpson scale. 

B-3

 

Table 4. Mean absolute error statistics [kt] for the estimates of MSW, stratified by tropical 

cyclone intensity and by basin. 

 

Table 5. Comparison of model performance for estimating MSW (kt) among the D04 model (old 

model) applied to the D04 developmental data set (old data), the D04 model applied to the 

revised dataset (new data), and the revised model (new model) applied to the revised dataset. 

Errors are shown for the whole datasets and stratified by tropical cyclone intensity. The errors for 

all hurricane-strength storms are shown as well as the errors specifically for the Category 5 

storms.  
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Table 6. Regression variables and statistics for estimating the azimuthally averaged radii of 34-, 

50-, and 64-kt winds (n mi). The variables in bold were used to estimate the wind radii in D04.* 

 

Table 7. Comparison of variance explained (R2) and error statistics (MAE and rmse) for 

azimuthally averaged 34-, 50-, and 64-kt wind radii between revised algorithms (new model) and 

D04 algorithms (old model).  
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Figure 1. Distribution of tropical cyclone cases by basin for the intensity estimation datasets. 
Shown is the dataset for MSW, with n=2637 cases. For MSLP, with n=2624 cases, only the 
Atlantic and east Pacific distributions are different, with 31.9% and 25.2%, respectively.  
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Figure 2. Comparison of MAE (n mi) for asymmetric 34-, 50-, and 64-kt wind radii between 
revised algorithms (new) and D04 algorithms (old). The concentric circles represent increasing 
error from the center of the graph at five-n mi increments.  
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Table 1. Potential estimators of tropical cyclone intensity and wind radii. The radius is denoted 
by r, where r=0 km is the storm center, and z is height. Except for the area-averaged CLWPER, 
all AMSU-derived parameters are azimuthally averaged.  
 

Acronym Description 

20 original potential estimators 

PMIN Min surface pressure (hPa) at storm center 

DP0 Pressure drop (hPa) at surface from r=600 to 0 km 

DP3 Pressure drop (hPa) at z=3 km from r=600 to 0 km 

TMAX Maximum temperature perturbation (°C) calculated as the temperature 

at r=600 km minus the temperature at each radius 

ZMAX Height (km) of maximum temperature perturbation (TMAX) 

SS Cross-track resolution (km) of AMSU footprint at storm center 

VMX0 Maximum wind speed (kt) at surface 

RMX0 Radius (km) of maximum winds at surface 

VMX3 Maximum wind speed (kt) at z=3 km 

RMX3 Radius (km) of maximum winds at z=3 km 

VBI0 Tangential winds at surface, averaged from r=0 to 250 km 

VBI3 Tangential winds at z=3 km, averaged from r=0 to 250 km 

VBI5 Tangential winds at z=5 km, averaged from r=0 to 250 km 

VBO0 Tangential winds at surface, averaged from r=250 to 500 km 

VBO3 Tangential winds at z=3 km, averaged from r=250 to 500 km 

VBO5 Tangential winds at z=5 km, averaged from r=250 to 500 km 

CLWAVE CLW content (mm), averaged from r=0 to 100 km 

CLWPER Percentage of area with CLW values > 0.5 mm from r=0 to 300 km 
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LAT* Latitude from NHC at storm center, interpolated to AMSU swath time 

VMXOP* Operational estimate of maximum sustained winds (kt) from NHC 

4 new potential estimators 

TMAX2 The squared value of the maximum temperature perturbation (TMAX) 

TMAX*CLWAVE The maximum temperature perturbation (TMAX) times the squared 

value of the CLW content (CLWAVE) 

CLWAVE2 The squared value of the CLW content (CLWAVE) 

P600* Surface pressure (hPa) at r=600, the edge of the analysis domain 

 
*These parameters are not derived from AMSU data. 
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A-2Table 2. Regression variables and statistics for estimating MSW (kt) and MSLP (hPa). For all the 
independent variables, the p-value = 0.00000. The seven variables in bold were used to estimate 
MSW and MSLP in D04. The other variable used to estimate MSLP in D04 was the AMSU-
derived minimum pressure (PMIN), which is replaced here by P600.  
 

Maximum sustained winds (kt)  

R2 = 78.7%, n=2637 

Minimum sea level pressure (hPa) 

R2 = 80.2%, n=2624 

Independent 

variable 

Coef Normalized coef Coef Normalized coef 

DP0 -4.33459 -1.11082 -0.04260 -0.97065 

DP3 6.48789 1.12637 0.06316 0.97499 

TMAX 6.28701 0.43377 0.07395 0.45339 

SS 0.13380 0.05446 0.00153 0.05553 

VMX3 0.49635 0.26216 0.00537 0.25166 

RMX3 -0.02713 -0.08288 -0.00029 -0.07767 

VBI5 1.72608 0.37544 0.01681 0.32463 

VBO0 1.85672 0.42698 0.01753 0.35812 

VBO3 -2.48450 -0.50946 -0.02156 -0.39237 

CLWAVE 19.84888 0.32547 0.20820 0.30325 

CLWPER -0.26614 -0.20932 -0.00209 -0.14620 

TMAX2 -0.51428 -0.30871 -0.00655 -0.34972 

P600 ---- ---- -0.01145 -0.14391 
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Table 3. Error statistics for the estimates of MSW and MSLP, stratified by tropical cyclone 
intensity. The statistics for the hurricane-strength storms are shown all together, and stratified by 
the categorical intensity based on the Saffir-Simpson scale.  B-3

 
 MSW MSLP 

 MAE RMSE Bias* MAE RMSE Bias* 

Tropical depressions (< 34 kt) 

(MSW: n=686; MSLP: n=675) 

9.2 11.5 7.7 4.8 6.1 -3.3 

Tropical storms (34–63 kt) 

(MSW: n=1083; MSLP: 

n=1084) 

9.6 12.0 0.1 5.7 7.6 -0.5 

All hurricanes (≥ 64 kt) 

(MSW: n=868; MSLP: n=865) 

13.6 17.7 -6.2 12.7 17.4 6.2 

       

Category 1 (64–82 kt) 

(MSW: n=322; MSLP: n=316) 

11.7 14.7 -0.1 9.4 12.3 0.2 

Category 2 (83–95 kt) 

(MSW: n=164; MSLP: n=165) 

11.7 14.8 -3.4 10.4 13.3 2.8 

Category 3 (96–113 kt) 

(MSW: n=185; MSLP: n=187) 

12.5 17.5 -7.4 12.2 17.1 7.5 

Category 4 (114–135 kt) 

(MSW: n=152; MSLP: n=152) 

16.6 21.2 -14.4 17.5 21.8 13.7 

Category 5 (> 135 kt) 

(MSW: n=45; MSLP: n=45) 

27.4 31.7 -27.4 30.7 36.3 30.1 
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*Bias is the average estimated values minus the average observed values. For MSW, a positive 

bias means the intensity was overestimated; for MSLP, a positive bias means the intensity was 

underestimated. 
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Table 4. Mean absolute error statistics [kt] for the estimates of MSW, stratified by tropical 

cyclone intensity and by basin. 

 

 Atlantic

Central 

Pacific 

East 

Pacific

Indian 

Ocean 

Southern 

Hemisphere 

West 

Pacific

Tropical depressions (< 34 kt) 
7.8 9.7 9.3 15.8 13.7 9.4 

Tropical storms (34–63 kt) 
8.8  8.8 9.5 13.4 10.3 

Category 1 (64–82 kt) 
10.7  14.2 29.7 12.8 11.2 

Category 2 (83–95 kt) 
8.3  14.2  11.0 13.2 

Category 3 (96–113 kt) 
9.2  18.0  17.9 11.8 

Category 4 (114–135 kt) 
13.8  32.1  20.8 13.7 

Category 5 (> 135 kt) 
16.2  32.5  31.8 29.7 
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Table 5. Comparison of model performance for estimating MSW (kt) among the D04 model (old 
model) applied to the D04 developmental data set (old data), the D04 model applied to the 
revised dataset (new data), and the revised model (new model) applied to the revised dataset. 
Errors are shown for the whole datasets and stratified by tropical cyclone intensity. The errors for 
all hurricane-strength storms are shown as well as the errors specifically for the Category 5 
storms.  
 

Old model 

on old data 

Old model 

on new data 

New model 

on new data 

 

MAE RMSE MAE RMSE MAE RMSE 

All tropical cyclones 10.6 13.5 11.5 14.8 10.8 14.0 

Tropical depressions  

(< 34 kt) 

9.6 11.8 10.3 12.9 9.2 11.5 

Tropical storms  

(34–63 kt) 

9.1 11.4 10.5 13.0 9.6 12.0 

All hurricanes  

(≥ 64 kt) 

13.3 17.0 13.7 17.9 13.6 17.7 

Category 5 (> 135 kt) ---- ---- 31.3 35.0 27.4 31.7 
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Table 6. Regression variables and statistics for estimating the azimuthally averaged radii of 34-, 
50-, and 64-kt winds (n mi). The variables in bold were used to estimate the wind radii in D04.* 
 
Independent variable Coef Normalized coef p-value 

Azimuthally averaged 34-kt wind radii (n mi) R2 = 78.4%, n=255 

PMIN -1.67423 -0.37416 0.00046 

DP0 3.46238 0.69620 0.00000 

TMAX 10.41016 0.57868 0.00088 

SS 0.38938 0.09591 0.00422 

VMX0 -0.67877 -0.27736 0.00651 

RMX0 0.09078 0.17946 0.00000 

CLWAVE -39.64186 -0.43684 0.00754 

CLWPER 0.30049 0.13851 0.02238 

TMAX*CLWAVE -8.81319 -0.94982 0.00003 

CLWAVE2 30.62560 0.75196 0.00084 

Azimuthally averaged 50-kt wind radii (n mi) R2 = 78.2%, n=170 

DP0 2.56301 0.66179 0.00002 

TMAX 6.85088 0.47242 0.00292 

VMX0 0.89570 0.44740 0.03951 

RMX0 0.06395 0.14058 0.00219 

VBI0 -5.54525 -1.15423 0.01145 

VBI3 13.59224 2.61995 0.01456 

VBI5 -13.04493 -2.41642 0.00150 

CLWAVE -18.61025 -0.23377 0.00151 
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CLWPER 0.27442 0.14557 0.02718 

VMXOP 0.49101 0.36035 0.00002 

Azimuthally averaged 64-kt wind radii (n mi) R2 = 86.4%, n=120 

SS 0.37589 0.17091 0.00001 

VMX0 2.10560 1.47816 0.00000 

VMX3 -2.52543 -1.62224 0.00009 

VBI0 -4.11899 -1.16041 0.00245 

VBI3 6.62236 1.65812 0.00209 

VBO3 1.75455 0.44403 0.02299 

VBO5 -1.94906 -0.43220 0.05254 

CLWPER 0.15221 0.11310 0.03941 

TMAX2 0.45719 0.51378 0.00000 

 
*Variables in the mean wind radii models from D04 that are not in the revised models are: for 
34-kt, VBI5, LAT, and VMXOP; for 50-kt, VMX3 and VBO5; for 64-kt, TMAX and VMXOP.  
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Table 7. Comparison of variance explained (R2) and error statistics (MAE and rmse) for 
azimuthally averaged 34-, 50-, and 64-kt wind radii between revised algorithms (new model) and 
D04 algorithms (old model).  
 

Azimuthally averaged 

34-kt wind radii 

Azimuthally averaged 

50-kt wind radii 

Azimuthally averaged 

64-kt wind radii 

 

New model Old model New model Old model New model Old model 

R2 78.4% 71.9% 78.2% 65.9% 86.4% 80.8% 

MAE 16.9 21.2 13.3 17.9 6.8 8.0 

Rmse 21.4 28.3 17.3 23.3 8.9 10.1 
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