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Abstract

Previous work—in which Advanced Microwave Sounding Unit (AMSU) data from the
Atlantic and east Pacific basins during 1999-2001 were used to provide objective estimates of 1-
min maximum sustained surface winds, minimum sea level pressure, and the radii of 34-, 50-,
and 64-kt (1 kt = 0.5144 m s'l) winds in the northeast, southeast, southwest, and northwest
quadrants of tropical cyclones—is updated to reflect larger datasets, improved statistical analysis
techniques, and improved estimation through dependent variable transforms. A multiple
regression approach, which utilizes best-subset predictor selection and cross validation, is
employed to develop the estimation models where the dependent data (i.e., maximum sustained
winds, minimum pressure, wind radii) are from the extended best-track, and the independent data
consist of AMSU-derived parameters that give information about retrieved pressure, winds,
temperature, moisture, and satellite resolution. The developmental regression models result in
mean absolute errors (MAE) of 10.8 kt and 7.8 hPa for estimating maximum winds and
minimum pressure, respectively. The MAE for the 34-, 50-, and 64-kt azimuthally averaged

wind radii are 16.9, 13.3, and 6.8 n mi (1 n mi = 1.8519 km), respectively.



1. Introduction

The utility of satellite-based microwave remote sensing for observation and analysis of
tropical cyclones (TC) has blossomed in the past decade because of the ability of microwave
instruments to provide vertical profiles of TC parameters as well as useful details about the
distribution of water vapor and deep convection. Moreover, the satellite-based data provide good
global spatial coverage of the tropical regions. More details on the benefits of using microwave
remote sensing for observing and analyzing TCs, including a brief description of several studies
which do so, can be found in Demuth et al. 2004 (hereafter referred to as D04).

D04 capitalized on the efficacy of passive microwave remote sensing for observing TCs
by using the Advanced Microwave Sounding Unit (AMSU), the follow-on to the Microwave
Sounding Unit. For more details of the AMSU instrument and its use for TC applications, see
Kidder et al. (2000), Knaff et al. (2000), Spencer and Braswell (2001), Brueske and Velden
(2003), Knaff et al. (2004), and Bessho et al. (2006). D04 used AMSU-derived data from 1999—
2001 to develop algorithms that provide objective estimates of intensity (i.e., I-min maximum
sustained winds [MSW] and minimum sea level pressure [MSLP]) and wind structure (i.e., radii
of 34-, 50-, and 64-kt winds [1 kt = 0.5144 m s™") for TCs in the Atlantic and East Pacific basins.
The sample size consisted of 473 cases (i.e., passes over a TC) for the intensity estimation
models and 129, 92, and 68 cases for the models estimating the 34-, 50-, and 64-kt wind radii,
respectively.

The work by D04 has since been updated by developing a much larger, more
representative, global set of data with TCs from the Atlantic, East Pacific, West Pacific, and
Central Pacific basins as well as from the Indian Ocean and Southern Hemisphere. In addition,

new potential estimative parameters were created based on transformations of original AMSU-



derived parameters. Finally, improved statistical model analysis and selection procedures were
implemented to define the best possible estimation models. These modifications, improvements,
and the resulting new models for estimating TC intensity and wind structure using AMSU data
are described in the following sections. Only the necessary information and modifications are
presented here, so the reader is referred to D04 for all the details of the methods not discussed in

this follow-up.

2. Data and Methods
a. Data

The specifics of how the AMSU data are collected and processed and of the temperature
and wind retrievals can be found in D04. For this work, data were collected from the AMSU
instruments aboard the National Oceanic and Atmospheric Administration (NOAA)-15, -16, and
-17 satellites. NOAA-15 data were available from 1999 through 2004, NOAA-16 data from 2001
through 2004, and NOAA-17 data from January through late October 2003. The NOAA-17
temperature profile data are unavailable after October 2003 because the AMSU-A instrument
failed. Likewise, two stratospheric channels (i.e., Channels 11 and 14) have failed on the AMSU
instrument aboard NOAA-15, but accommodating corrections to the temperature retrieval
algorithm were made. The retrieval was limited to those cases in which the TC center fell within
700 km of the AMSU swath center. Previously, a threshold of 600 km was used, but that limit
was increased to 700 km in order to increase the number of cases for testing. The increase of this
threshold resulted in no degradation of these algorithms. This constraint resulted in AMSU cases
being an average of less than 17 hours apart when only one NOAA satellite was available

(during 1999 and 2000), 10—-11.5 hours apart when two NOAA satellites were available (during




2001, 2002, and 2004), and approximately 8.5 hours apart when three NOAA satellites were
available (during 2003).

In addition to D04’s earlier work, in which the AMSU data were collected for all Atlantic
and East Pacific TCs from 1999-2001, three more years of data (i.e., from 2002—-04) were
acquired, for a complete dataset ranging from 1999-2004. AMSU data also were collected for
TCs in the Central Pacific and Indian Ocean from 2003—-04, and in the West Pacific and Southern
Hemisphere from 2002—-04.

Acquisition of these new data results in 2637 and 2624 cases for estimating the MSW and
MSLP, respectively, more than quintuple the size of D04’s previous dataset for intensity
estimation. The distribution of cases by basin (Figure 1) shows that approximately one-third of
the cases are from the Atlantic basin, one-third are from the West Pacific basin, and the
remaining one-third are from the other four basins combined. These new data provide 45 cases at
the Category 5-level (> 135 kt) compared to D04, where there were no AMSU passes over a TC
while it was of Category-5 intensity. As will be described in more detail in the next subsection,
the new wind radii datasets were restricted to cases with coincident reconnaissance, leaving 255
cases for the 34-kt winds, 170 cases for the 50-kt winds, and 120 cases for the 64-kt winds.
These recon-based sample sizes are nearly double the dataset from D04’s previous work, in
which the wind radii datasets were developed using only Atlantic cases west of 55°W—a
restriction imposed because of the higher likelihood of having in situ measurements in that

region—as well as Atlantic and East Pacific cases with reconnaissance.

b. Methods



The resolution of the AMSU data, which is 48 km at best, is too coarse to adequately
resolve TC structure. Thus, parameters derived from the AMSU temperature, pressure, and wind
retrievals are used to develop an empirically based statistical model for estimating TC intensity
and winds in real time. As in D04’s earlier work, 18 AMSU-derived parameters serve as
potential estimators along with the 2 non-AMSU-derived parameters, latitude (LAT) and the
operational estimate of intensity (VMXOP) (Table 1); the latter parameter—the operational
estimate of TC intensity—is used only for estimating the wind radii. In addition to these 20
parameters, 4 additional estimators were added to the predictor pool (Table 1) to try to better
estimate the stronger TCs—which the D04 algorithms typically do not estimate well because of
the coarse horizontal resolution of the AMSU—and to better detect dissipating storms. Three of
the new variables are transformations of other AMSU-derived variables. P600, or the surface
pressure at a radius of 600 km, is not AMSU-derived; this information is determined from the
National Centers for Environmental Prediction Global Forecast System model. P600 is used as a
boundary condition for the AMSU pressure retrieval and, as such, is used to derive the minimum
surface pressure (PMIN) and pressure drop at the surface (DP0), where P600=PMIN+DPO.

The dependent data for the TC intensity and wind radii estimations are from National
Hurricane Center (NHC), Joint Typhoon Warning Center, and Central Pacific Hurricane Center

extended best-track' data within 6 h of the AMSU swath time, linearly interpolated to the time of

' The extended best-track data supplements standard best-track position and intensity data—which are determined
from post-season analyses of all information available and are reported every six hours—with operational estimates
of TC size parameters (e.g., radii of 34-, 50-, and 64-kt winds, radius of maximum winds). The extended best track
was prepared by Mark DeMaria with partial support from the Risk Prediction Initiative. Both the best track and the

advisories containing wind-radii information used to create the extended best track come from the databases



the swath. The 34-, 50-, and 64-kt wind radii datasets were restricted to cases that had a
reconnaissance flight within 12 hours prior, because estimates of the wind radii can be grossly in
error when in situ observations are not available. The intensity datasets were not restricted to
cases with coincident reconnaissance, because best-track estimates of intensities, unlike wind
radii, are reasonably accurate and that doing so would have resulted in a much smaller set of
cases. Of that smaller dataset, the vast majority of cases are from the Atlantic basin, only a
handful are from the East Pacific and West Pacific basins, and there are no cases from the
Central Pacific, Indian Ocean, or Southern Hemisphere. Thus, the much larger, more
representative dataset is preferred.

1) INTENSITY ESTIMATION

Two algorithms are developed using AMSU data to estimate intensity, one each for the
MSW and the MSLP. Again, in attempt to better estimate the stronger storms, the dependent data
for both the MSW and MSLP were transformed in several ways. The results indicated that the
MSW are best estimated directly, with the MSW values as the dependent data. However, the
MSLP are best estimated indirectly; the data first are subtracted from a set value of 1050 hPa,
then an algorithm to estimate the natural log of that differenced value is developed, and finally
the MSLP is re-obtained.

To develop algorithms that estimate TC intensity, a best-subsets multiple linear
regression (Miller, 2002) technique was employed. This technique examines all potential

regression equation combinations up to some N number of variables. For example, if there were

maintained in the Automated Tropical Cyclone Forecast (Sampson and Schrader, 2000) databases at the National
Hurricane Center and the Joint Typhoon Warning Center. Applications of the extended best track can be found in

Kimball and Mulekar (2004).



three independent variables, the best-subsets technique would assess seven equations: three
equations with single estimators, three equations with two estimators each, and one equation
with all three estimators. The advantage of this method over an automated technique, such as
stepwise regression, is that it allows the user to see the regression results from all possible
models and to select the most appropriate model based on the user’s criteria. The best-subsets
technique was combined with a cross-validation scheme to provide a more realistic assessment
of the errors. To thoroughly evaluate the models, the regression equations were developed with
80% of the cases, chosen randomly, and tested on the remaining 20% of the cases (Brieman and
Spector, 1992). This 80/20 cross-validation procedure was conducted 1000 times for every
possible model to ensure robust estimates of error.

To develop the intensity estimation models, best-subsets were used to analyze all possible
models having up to 15 independent variables. The evaluation criteria included (1) the
minimization of the mean absolute error (MAE)—which has the same units as the dependent
variable so that there is physical meaning to the errors—of both the developmental and the cross-
validated datasets, and (2) that all estimators are significant to 1% (a=0.01). Based on these

results, the best models were chosen for estimating the MSW and MSLP.

2) AZIMUTHALLY AVERAGED AND ASYMMETRIC WIND RADII ESTIMATION

As in D04’s previous work, the azimuthally averaged wind radii of 34-, 50-, and 64-kt
winds are estimated in a manner similar to the intensity estimation. The averaged wind radii
values then were used in conjunction with a simple wind model—a modified Rankine vortex
plus a vector proportional to TC motion—to estimate the asymmetric wind structure in terms of

the wind radii in the northeast (NE), southeast (SE), southwest (SW), and northwest (NW)



quadrants of the TC. A complete discussion of the asymmetric wind radii estimation methods
can be found in D04. The one difference, however, is that the dependent data for the azimuthally
averaged dataset were established by averaging only the quadrants for which non-zero wind radii
existed in the extended best-track data; previously, D04 took the average of all four quadrants,
including those for which no wind radii existed. Eliminating the quadrants with zero wind radii
from the average removes noise from the data for cases where the maximum wind is close to the
34-, 50-, or 64-kt wind radii threshold. In these cases, the wind radii in some quadrants rapidly
vary between zero and non-zero values as a function of time.

The algorithms that estimate the azimuthally averaged 34-, 50-, and 64-kt wind radii are
developed with the same methods as the intensity estimation algorithms—that is, with a best-
subsets multiple linear regression combined with a cross-validation method that uses 80% of the
data for developmental purposes and 20% of the data for testing, which is run 1000 times for
each possible model. The evaluation criteria for the wind radii regressions are (1) the
minimization of the MAE of the developmental and the cross-validated datasets, as with the
intensity estimation models, and (2) that all estimators are significant to 5% (a=0.05). A less
stringent significance level was used for the mean wind radii estimations than for the intensity
estimations, because the smaller wind radii sample sizes made it difficult to achieve robust

regression models with the more stringent significance level.

3. Intensity Estimation Results
The new regression equation for estimating MSW retains 12 variables and explains

78.7% of the variance (R?), and an additional variable is retained for estimating MSLP,



explaining 80.2% of the variance (Table 2). Compared to D04, this is a 6.4% and 3.7%
improvement in the R?, respectively.

Seven parameters—DP0, TMAX, SS, RMX3, VBI5, CLWAVE, and CLWPER—defined
the model used in D04 to estimate MSW and, with the addition of PMIN, to estimate MSLP.
Those same seven variables are retained again, along with five additional variables (i.e., DP3,
VMX3, VBOO0, VBO3, and TMAXz), to estimate MSW (Table 2). For the estimate of MSLP, the
same original seven variables and five new variables are retained, but P600 now is retained in
place of PMIN (Table 2). As discussed earlier, P600 is a model-derived boundary condition used
to determine PMIN and DP0O, where P600 is the sum of those two parameters; thus, any
combination of two of these three variables provides the same information. P600 was chosen in
place of PMIN—even though the developmental regression results are the same for either
parameter—because it is easier to understand that P600 provides information about the
background pressure environment than the combination of PMIN and DPO.

In Table 2, the normalized coefficients are indicative of the relative weight each variable
has in providing the TC intensity estimates. For each variable, the normalized coefficients for the
MSW and MSLP models have similar magnitudes. This similarity should be expected because,
as described previously, the MSLP variable is actually the log of the difference in the central
pressure from 1050 hPa, so a larger value of MSLP indicates a stronger storm, similar to MSW.
The physical interpretation of the normalized coefficients in Table 2 is complicated by the fact
that the variables can interact with each other. For example, DPO and DP3 have the largest
coefficients, but opposite signs. Thus, it is really the difference between these two variables that
is correlated with the intensity. The direct relationship with intensity comes from the TMAX

(modified by TMAX?), VMX3 and VBIS5 terms. A warmer core and stronger retrieved maximum
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and average inner winds increase the intensity estimate. The effects of SS and RMX3 are
smaller, but also have a direct physical interpretation. The intensity estimate in increased when
SS is large (a correction for lower data resolution) and when RMX3 is smaller (more intense
storms tend to have a smaller radius of maximum wind). The two moisture variables (CLWAVE
and CLWPER) interact but increase the intensity when the CLW is generally higher. The
remaining variables occur in pairs with opposite signs (DPO with DP3 and VBOO with VBO3)
and are related to the vertical structure of the retrievals. These variables are probably providing
additional corrections due to attenuation, which has a strong influence on the difference in the
retrieved variables between vertical levels. The P600 variable increases the MSLP (which lowers
the central pressure estimate) when the environmental pressure is low.

The MAE and rmse for the new MSW estimation model from the developmental dataset
are 10.8 and 14.0 kt, respectively. For the new MSLP model, the MAE is 7.8 hPa and the rmse is
11.6 hPa. The errors stratified by TC intensity are given in Table 3. These data show that the
AMSU intensity estimation algorithms work best on tropical storms (34—63 kt) and weak
hurricanes (64-95 kt); they tend to overestimate the intensity of tropical depressions (< 34 kt);
and they tend to underestimate the intensity of major hurricanes (= 96 kt), especially Category 5
storms (> 135 kt). Looking only at the MSW estimation, the model tends to underestimate MSW
during instances of rapid intensification (defined here as at least 30 kt within 24 hr). This
occurred 23 times, and the MAE of these cases is 23.4 kt with a bias of -20.2 kt. This may be due
to a lag in the AMSU detecting changes in the warm core (i.e., TMAX) or that the warming in
the core is distributed differently within rapidly intensifying storms.

An analysis of the errors for the MSW estimation stratified by the six basins and by

intensity is shown in Table 4. The estimations for the Atlantic basin likely are of higher skill
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because, of the 846 cases comprising the developmental dataset, 300 have coincident
reconnaissance, resulting in a better developmental dataset. In comparison, it is possible that the
larger errors for stronger hurricanes in the East Pacific, Southern Hemisphere, and West Pacific
may be largely due to fewer in situ observations in these basins. There are also basin specific
possibilities for these larger intensity errors. The East Pacific TCs are notably smaller than those
in other basins (Knaff et al. 2006, manuscript submitted to Wea. Forecasting), and Southern
Hemisphere positional errors are larger because forecast advisories are issued every 12 h in that
region, as opposed to every 6 h. For the Central Pacific and Indian Ocean, the datasets are made
up of very few cases, potentially making the error estimates less representative. For example,
there was only one hurricane in the Indian Ocean, so the 29.7 kt error shown in Table 4 is based
on this case alone.

When comparing the error statistics from the new intensity estimation models with those
from D04, on the surface it appears as though the new models result in slightly greater errors
(Table 5). However, testing the intensity estimation models from D04 on the new, more
representative datasets provides a more direct assessment of the errors. Applying the MSW
model from D04 to the new data results in MAE and rmse of 11.5 and 14.8 kt (Table 5) and
applying the MSLP model results in errors of 8.9 and 13.1 hPa (not shown in Table 5), all of
which are higher than the errors from the new models. These results are consistent when
examining the errors stratified by TC intensity. A specific analysis of the Category 5 storms
shows that the D04 model estimates of MSW are in error by an average of 4 kt more than the
new MSW model estimate (MSLP by 15 hPa; not shown). Thus, the new intensity estimation

models are better overall than the D04 models, and they are especially better at estimating
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stronger TCs, in part because the new datasets include several cases of Category-5 intensity,

whereas the D04 dataset had none.

4. Wind Radii Estimation Results
a. Azimuthally averaged wind radii

Unlike the updated intensity estimation models, which employed all of the same
estimative parameters as in D04, the revised azimuthally averaged wind radii estimation models
differ considerably from the old versions. This probably is due to the previous datasets being less
representative because of their smaller sample sizes and their not being comprised solely of cases
coincident with reconnaissance data to ensure more accurate observations. As such, the new
models are more robust, as is shown by their improved error statistics.

The final regression equations for the 34- and 50-kt mean wind radii each retain 10
variables, and the 64-kt mean wind radii equation retains 9 variables (Table 6). The normalized
coefficients for the wind radii are more difficult to interpret physically than those for the
intensity estimation because there is more interaction among the independent variables. The SS
and RMXO0 variables have a direct relationship, increasing the radii for large SS (resolution
correction) and when RMXQO is large. The radii also increase for larger TMAX, although there is
some interaction with CLWAVE for the 34-kt radii. This relationship probably represents the
increase in storm radii when the storm becomes more intense. For the 50-kt radii, the
combination of the VMXOP and TMAX terms represents this same effect. For the 64-kt radii,
larger CLWPER values are related to larger radii; this might be expected, because larger storms
tend to have larger cloud regions. The relationship with the CLW variables is more difficult to

interpret for the 34- and 50-kt winds, because there is considerable interaction with other terms.
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Similar to the intensity coefficients, there are several variables that have similar coefficients but
opposite signs, which probably is related to attenuation effects.

The mean 34-kt algorithm explains 78.4% of the variance, and it results in a MAE of 16.9
n mi and a rmse of 21.4 n mi (1 n mi = 1.8519 km). For the mean 50-kt wind radii, 78.2% of the
variance is explained, and the MAE and rmse are 13.3 and 17.3 n mi, respectively. Finally, the
mean 64-kt wind radii algorithm explains 86.4% of the variance and results in MAE and rmse of
6.8 and 8.9 n mi, respectively. The improved errors from the updated models compared to the

models from D04 are shown in Table 7.

b. Asymmetric wind radii

The improved azimuthally averaged wind radii estimates lead to improved estimates of
the wind radii in the NE, SE, SW, and NW quadrants of the TC. Figure 2 shows the MAE of
each wind radii by quadrant based on the revised models and the D04 models. Although there are
only slight improvements in the NE quadrant—which averages the largest wind radii of all four
quadrants for all three wind thresholds—the radii in the other three quadrants improve

substantially.

5. Summary and Conclusions

This research was a follow-on to previous work conducted by Demuth et al. (2004) to
improve the estimation of tropical cyclone intensity (i.e., in terms of the maximum sustained
winds and minimum sea level pressure) and wind structure (i.e., in terms of the radii of 34-, 50-,
and 64-kt winds in the northeast, southeast, southwest, and northwest quadrants of the storm)

using parameters derived from AMSU data. In their original work, Demuth et al. only had data

14



from tropical cyclones in the Atlantic and East Pacific basins from 1999 through 2001 on which
to develop their algorithms. An additional 3 years of data, as well as data from tropical cyclones
in the Central and West Pacific basins, Indian Ocean, and Southern Hemisphere, provide a much
larger and more representative sample set. The added data more than quintupled the prior dataset
for intensity estimation. The mean wind radii datasets, which are twice as large as before, are
based entirely on cases coincident with aircraft reconnaissance within 12 hours prior. Moreover,
the mean wind radii were calculated without averaging quadrants with zero wind radii,
improving the mean radii estimates which, in turn, improves the asymmetric wind estimates. The
intensity and azimuthally averaged wind structure estimation models were developed using a
best-subsets technique, which analyzes all possible combinations of up to 15 independent
variables. Every model was cross-validated 1000 times by using 80% of the cases, randomly
chosen, for development and using the remaining 20% of the cases for testing. Overall, the larger
datasets and modified methods result in superior estimates of intensity, especially for stronger
TCs, and wind structure when compared to D04.

These revised algorithms were transitioned to operations at the National Hurricane
Center/ Tropical Prediction Center (NHC/TPC) during 2005, where they will provide objective,
and independent TC intensity estimates. The results generated at NHC will be provided to all
U.S. operational tropical cyclone forecast centers using data from the NOAA-15, -16, and -18
satellites. Currently, there are no plans to revise these algorithms further using AMSU data.
However, a new NOAA satellite system, NPOESS (National Polar-orbiting Operational
Environmental Satellite System), is slated for launch in 2009. On NPOESS will be the Cross-

track Infrared Sounder (CrIS) and the Advanced Technology Microwave Sounder (ATMS).
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Denoted jointly as CrIMSS, this sensor suite will provide global profiles of temperature,

moisture, and pressure, which could be used for future TC applications.
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Figure 1. Distribution of tropical cyclone cases by basin for the intensity estimation datasets.
Shown is the dataset for MSW, with n=2637 cases. For MSLP, with n=2624 cases, only the

Atlantic and east Pacific distributions are different, with 31.9% and 25.2%, respectively.

Figure 2. Comparison of MAE for asymmetric 34-, 50-, and 64-kt wind radii between revised

algorithms (new) and D04 algorithms (old). The concentric circles represent increasing error

from the center of the graph at five-n mi increments.
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Table 1. Potential estimators of tropical cyclone intensity and wind radii. The radius is denoted
by r, where =0 km is the storm center, and z is height. Except for the area-averaged CLWPER,

all AMSU-derived parameters are azimuthally averaged.

Table 2. Regression variables and statistics for estimating MSW (kt) and MSLP (hPa). For all the
independent variables, the p-value = 0.00000. The seven variables in bold were used to estimate
MSW and MSLP in D04. The other variable used to estimate MSLP in D04 was the AMSU-

derived minimum pressure (PMIN), which is replaced here by P600.

Table 3. Error statistics for the estimates of MSW and MSLP, stratified by tropical cyclone
intensity. The statistics for the hurricane-strength storms are shown all together, and stratified by

the categorical intensity based on the Saffir-Simpson scale.

Table 4. Mean absolute error statistics [kt] for the estimates of MSW, stratified by tropical

cyclone intensity and by basin.

Table 5. Comparison of model performance for estimating MSW (kt) among the D04 model (old
model) applied to the D04 developmental data set (old data), the D04 model applied to the
revised dataset (new data), and the revised model (new model) applied to the revised dataset.
Errors are shown for the whole datasets and stratified by tropical cyclone intensity. The errors for
all hurricane-strength storms are shown as well as the errors specifically for the Category 5

storms.
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Table 6. Regression variables and statistics for estimating the azimuthally averaged radii of 34-,

50-, and 64-kt winds (n mi). The variables in bold were used to estimate the wind radii in D04.*

Table 7. Comparison of variance explained (R2) and error statistics (MAE and rmse) for

azimuthally averaged 34-, 50-, and 64-kt wind radii between revised algorithms (new model) and

D04 algorithms (old model).
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Figure 1. Distribution of tropical cyclone cases by basin for the intensity estimation datasets.
Shown is the dataset for MSW, with n=2637 cases. For MSLP, with n=2624 cases, only the
Atlantic and east Pacific distributions are different, with 31.9% and 25.2%, respectively.
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Figure 2. Comparison of MAE (n mi) for asymmetric 34-, 50-, and 64-kt wind radii between
revised algorithms (new) and D04 algorithms (old). The concentric circles represent increasing

error from the center of the graph at five-n mi increments.
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Table 1. Potential estimators of tropical cyclone intensity and wind radii. The radius is denoted
by r, where =0 km is the storm center, and z is height. Except for the area-averaged CLWPER,
all AMSU-derived parameters are azimuthally averaged.

Acronym Description
20 original potential estimators
PMIN Min surface pressure (hPa) at storm center
DPO Pressure drop (hPa) at surface from r=600 to 0 km
DP3 Pressure drop (hPa) at z=3 km from r=600 to 0 km
TMAX Maximum temperature perturbation (°C) calculated as the temperature
at =600 km minus the temperature at each radius
ZMAX Height (km) of maximum temperature perturbation (TMAX)
SS Cross-track resolution (km) of AMSU footprint at storm center
VMXO0 Maximum wind speed (kt) at surface
RMXO0 Radius (km) of maximum winds at surface
VMX3 Maximum wind speed (kt) at z=3 km
RMX3 Radius (km) of maximum winds at z=3 km
VBIO Tangential winds at surface, averaged from r=0 to 250 km
VBI3 Tangential winds at z=3 km, averaged from r=0 to 250 km
VBI5 Tangential winds at z=5 km, averaged from r=0 to 250 km
VBOO0 Tangential winds at surface, averaged from =250 to 500 km
VBO3 Tangential winds at z=3 km, averaged from r=250 to 500 km
VBO5 Tangential winds at z=5 km, averaged from r=250 to 500 km
CLWAVE CLW content (mm), averaged from r=0 to 100 km
CLWPER Percentage of area with CLW values > 0.5 mm from r=0 to 300 km
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LAT*

Latitude from NHC at storm center, interpolated to AMSU swath time

VMXOP* Operational estimate of maximum sustained winds (kt) from NHC
4 new potential estimators
TMAX” The squared value of the maximum temperature perturbation (TMAX)
TMAX*CLWAVE  The maximum temperature perturbation (TMAX) times the squared
value of the CLW content (CLWAVE)
CLWAVE? The squared value of the CLW content (CLWAVE)
P600* Surface pressure (hPa) at =600, the edge of the analysis domain

*These parameters are not derived from AMSU data.
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Table 2. Regression variables and statistics for estimating MSW (kt) and MSLP (hPa). For all the
independent variables, the p-value = 0.00000. The seven variables in bold were used to estimate
MSW and MSLP in D04. The other variable used to estimate MSLP in D04 was the AMSU-
derived minimum pressure (PMIN), which is replaced here by P600.

Independent Maximum sustained winds (kt) Minimum sea level pressure (hPa)
variable R” = 78.7%, n=2637 R*=80.2%, n=2624

Coef Normalized coef Coef Normalized coef
DPO -4.33459 -1.11082 -0.04260 -0.97065
DP3 6.48789 1.12637 0.06316 0.97499
TMAX 6.28701 0.43377 0.07395 0.45339
SS 0.13380 0.05446 0.00153 0.05553
VMX3 0.49635 0.26216 0.00537 0.25166
RMX3 -0.02713 -0.08288 -0.00029 -0.07767
VBI5 1.72608 0.37544 0.01681 0.32463
VBOO0 1.85672 0.42698 0.01753 0.35812
VBO3 -2.48450 -0.50946 -0.02156 -0.39237
CLWAVE 19.84888 0.32547 0.20820 0.30325
CLWPER -0.26614 -0.20932 -0.00209 -0.14620
TMAX? -0.51428 -0.30871 -0.00655 -0.34972
P600 - . -0.01145 -0.14391
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Table 3. Error statistics for the estimates of MSW and MSLP, stratified by tropical cyclone
intensity. The statistics for the hurricane-strength storms are shown all together, and stratified by
the categorical intensity based on the Saffir-Simpson scale.

MSW MSLP

MAE RMSE Bias* MAE RMSE  Bias*

Tropical depressions (< 34 kt) 9.2 11.5 7.7 4.8 6.1 -3.3
(MSW: n=686; MSLP: n=675)

Tropical storms (34-63 kt) 9.6 12.0 0.1 5.7 7.6 -0.5
(MSW: n=1083; MSLP:

n=1084)

All hurricanes (> 64 kt) 13.6 17.7 -6.2 12.7 17.4 6.2

(MSW: n=868; MSLP: n=865)

Category 1 (64-82 kt) 11.7 14.7 0.1 94 123 0.2
(MSW: n=322; MSLP: n=316)
Category 2 (83-95 kt) 11.7 14.8 34 104 133 2.8
(MSW: n=164; MSLP: n=165)
Category 3 (96-113 kt) 12.5 17.5 74 122 17.1 7.5
(MSW: n=185; MSLP: n=187)
Category 4 (114-135 kt) 16.6 212 -144 175 218 13.7
(MSW: n=152; MSLP: n=152)
Category 5 (> 135 kt) 27.4 31,7 274 307 363 30.1

(MSW: n=45; MSLP: n=45)
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*Bias is the average estimated values minus the average observed values. For MSW, a positive
bias means the intensity was overestimated; for MSLP, a positive bias means the intensity was

underestimated.
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Table 4. Mean absolute error statistics [kt] for the estimates of MSW, stratified by tropical

cyclone intensity and by basin.

Central East Indian Southern West

Atlantic Pacific Pacific Ocean Hemisphere Pacific

7.8 9.7 9.3 15.8 13.7 9.4
Tropical depressions (< 34 kt)
. 8.8 8.8 9.5 13.4 10.3
Tropical storms (34—63 kt)
10.7 14.2 29.7 12.8 11.2
Category 1 (64-82 kt)
8.3 14.2 11.0 13.2
Category 2 (83-95 kt)
9.2 18.0 17.9 11.8
Category 3 (96—113 kt)
13.8 32.1 20.8 13.7
Category 4 (114135 kt)
16.2 32.5 31.8 29.7

Category 5 (> 135 kt)
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Table 5. Comparison of model performance for estimating MSW (kt) among the D04 model (old
model) applied to the D04 developmental data set (old data), the D04 model applied to the
revised dataset (new data), and the revised model (new model) applied to the revised dataset.
Errors are shown for the whole datasets and stratified by tropical cyclone intensity. The errors for
all hurricane-strength storms are shown as well as the errors specifically for the Category 5
storms.

0Old model Old model New model

on old data on new data on new data

MAE RMSE MAE RMSE MAE RMSE

All tropical cyclones 10.6 13.5 11.5 14.8 10.8 14.0
Tropical depressions 9.6 11.8 10.3 12.9 9.2 11.5
(<34 kt)

Tropical storms 9.1 11.4 10.5 13.0 9.6 12.0
(34-63 kt)

All hurricanes 13.3 17.0 13.7 17.9 13.6 17.7
(= 64 kt)

Category 5 (> 135 kt) - e 31.3 35.0 274 31.7
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Table 6. Regression variables and statistics for estimating the azimuthally averaged radii of 34-,
50-, and 64-kt winds (n mi). The variables in bold were used to estimate the wind radii in D04.*

Independent variable Coef Normalized coef p-value

Azimuthally averaged 34-kt wind radii (n mi) R* = 78.4%, n=255

PMIN -1.67423 -0.37416 0.00046
DPO 3.46238 0.69620 0.00000
TMAX 10.41016 0.57868 0.00088
SS 0.38938 0.09591 0.00422
VMXO0 -0.67877 -0.27736 0.00651
RMXO0 0.09078 0.17946 0.00000
CLWAVE -39.64186 -0.43684 0.00754
CLWPER 0.30049 0.13851 0.02238
TMAX*CLWAVE -8.81319 -0.94982 0.00003
CLWAVE® 30.62560 0.75196 0.00084
Azimuthally averaged 50-kt wind radii (n mi) R* = 78.2%, n=170
DP0 2.56301 0.66179 0.00002
TMAX 6.85088 0.47242 0.00292
VMXO0 0.89570 0.44740 0.03951
RMXO0 0.06395 0.14058 0.00219
VBIO -5.54525 -1.15423 0.01145
VBI3 13.59224 2.61995 0.01456
VBI5 -13.04493 -2.41642 0.00150
CLWAVE -18.61025 -0.23377 0.00151
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CLWPER 0.27442 0.14557 0.02718

VMXOP 0.49101 0.36035 0.00002

Azimuthally averaged 64-kt wind radii (n mi) R* = 86.4%, n=120

SS 0.37589 0.17091 0.00001
VMXO0 2.10560 1.47816 0.00000
VMX3 -2.52543 -1.62224 0.00009
VBIO -4.11899 -1.16041 0.00245
VBI3 6.62236 1.65812 0.00209
VBO3 1.75455 0.44403 0.02299
VBO5 -1.94906 -0.43220 0.05254
CLWPER 0.15221 0.11310 0.03941
TMAX? 0.45719 0.51378 0.00000

*Variables in the mean wind radii models from D04 that are not in the revised models are: for
34-kt, VBI5, LAT, and VMXOP; for 50-kt, VMX3 and VBO35; for 64-kt, TMAX and VMXOP.
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Table 7. Comparison of variance explained (R®) and error statistics (MAE and rmse) for
azimuthally averaged 34-, 50-, and 64-kt wind radii between revised algorithms (new model) and
D04 algorithms (old model).

Azimuthally averaged Azimuthally averaged Azimuthally averaged

34-kt wind radii 50-kt wind radii 64-kt wind radii

New model Old model New model Oldmodel New model Old model

R’ 78.4% 71.9% 78.2% 65.9% 86.4% 80.8%
MAE 16.9 21.2 13.3 17.9 6.8 8.0
Rmse 21.4 28.3 17.3 233 8.9 10.1
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