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ABSTRACT

Previous work, in which Advanced Microwave Sounding Unit (AMSU) data from the Atlantic Ocean and
east Pacific Ocean basins during 1999–2001 were used to provide objective estimates of 1-min maximum
sustained surface winds, minimum sea level pressure, and the radii of 34-, 50-, and 64-kt (1 kt � 0.5144
m s�1) winds in the northeast, southeast, southwest, and northwest quadrants of tropical cyclones, is up-
dated to reflect larger datasets, improved statistical analysis techniques, and improved estimation through
dependent variable transforms. A multiple regression approach, which utilizes best-subset predictor selec-
tion and cross validation, is employed to develop the estimation models, where the dependent data (i.e.,
maximum sustained winds, minimum pressure, wind radii) are from the extended best track and the
independent data consist of AMSU-derived parameters that give information about retrieved pressure,
winds, temperature, moisture, and satellite resolution. The developmental regression models result in mean
absolute errors (MAE) of 10.8 kt and 7.8 hPa for estimating maximum winds and minimum pressure,
respectively. The MAE for the 34-, 50-, and 64-kt azimuthally averaged wind radii are 16.9, 13.3, and 6.8 n
mi (1 n mi � 1852 m), respectively.

1. Introduction

The utility of satellite-based microwave remote sens-
ing for observation and analysis of tropical cyclones
(TCs) has blossomed in the past decade because of the
ability of microwave instruments to provide vertical
profiles of TC parameters as well as useful details about
the distribution of water vapor and deep convection.
Moreover, the satellite-based data provide good global
spatial coverage of the tropical regions. More details on
the benefits of using microwave remote sensing for ob-
serving and analyzing TCs, including a brief description

of several studies that do so, can be found in Demuth et
al. (2004, hereinafter D04).

D04 capitalized on the efficacy of passive microwave
remote sensing for observing TCs by using the Ad-
vanced Microwave Sounding Unit (AMSU), the follow-
on to the Microwave Sounding Unit. For more details
of the AMSU instrument and its use for TC applica-
tions, see Kidder et al. (2000), Knaff et al. (2000), Spen-
cer and Braswell (2001), Brueske and Velden (2003),
Knaff et al. (2004), and Bessho et al. (2006). D04 used
AMSU-derived data from 1999 to 2001 to develop al-
gorithms that provide objective estimates of intensity
[i.e., 1-min maximum sustained winds (MSW) and mini-
mum sea level pressure (MSLP)] and wind structure
[i.e., radii of 34-, 50-, and 64-kt winds (1 kt � 0.5144
m s�1)] for TCs in the Atlantic and east Pacific basins.
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The sample size consisted of 473 cases (i.e., passes over
a TC) for the intensity estimation models and 129, 92,
and 68 cases for the models estimating the 34-, 50-, and
64-kt wind radii, respectively.

The work by D04 has since been updated by devel-
oping a much larger, more representative global set of
data with TCs from the Atlantic, east Pacific, west Pa-
cific, and central Pacific basins as well as from the In-
dian Ocean and Southern Hemisphere. In addition,
new potential estimative parameters were created
based on transformations of original AMSU-derived
parameters. Last, improved statistical model analysis
and selection procedures were implemented to define
the best possible estimation models. These modifica-
tions, improvements, and the resulting new models for
estimating TC intensity and wind structure using
AMSU data are described in the following sections.
Only the necessary information and modifications are
presented here, and therefore the reader is referred to
D04 for all the details of the methods not discussed in
this follow-up.

2. Data and methods

a. Data

The specifics of how the AMSU data are collected
and processed and of the temperature and wind retriev-
als can be found in D04. For this work, data were col-
lected from the AMSU instruments aboard the Na-
tional Oceanic and Atmospheric Administration
(NOAA)-15, -16, and -17 satellites. Data were available
for NOAA-15 from 1999 through 2004, for NOAA-16
from 2001 through 2004, and for NOAA-17 from Janu-
ary through late October of 2003. The NOAA-17 tem-
perature profile data are unavailable after October
2003 because the AMSU-A instrument failed. Like-
wise, two stratospheric channels (i.e., channels 11 and
14) have failed on the AMSU instrument aboard
NOAA-15, but accommodating corrections to the tem-
perature retrieval algorithm were made. The retrieval
was limited to those cases in which the TC center fell
within 700 km of the AMSU swath center. Previously, a
threshold of 600 km was used, but that limit was in-
creased to 700 km in order to increase the number of
cases for testing. The increase of this threshold resulted
in no degradation of these algorithms. This constraint
resulted in AMSU cases being an average of less than
17 h apart when only one NOAA satellite was available
(during 1999 and 2000), 10–11.5 h apart when two
NOAA satellites were available (during 2001, 2002, and
2004), and approximately 8.5 h apart when three
NOAA satellites were available (during 2003).

In addition to D04’s earlier work, in which the

AMSU data were collected for all Atlantic Ocean and
east Pacific Ocean TCs from 1999 to 2001, three more
years of data (i.e., from 2002 to 2004) were acquired for
a complete dataset ranging from 1999 to 2004. AMSU
data also were collected for TCs in the central Pacific
and the Indian Ocean from 2003 to 2004, and in the
west Pacific and Southern Hemisphere from 2002 to 2004.

Acquisition of these new data results in 2637 and
2624 cases for estimating the MSW and MSLP, respec-
tively, which is more than quintuple the size of D04’s
previous dataset for intensity estimation. The distribu-
tion of cases by basin (Fig. 1) shows that approximately
one-third of the cases are from the Atlantic basin, one-
third are from the west Pacific basin, and the remaining
one-third are from the other four basins combined.
These new data provide 45 cases at the category-5 level
(�135 kt) as compared with D04, in which there were
no AMSU passes over a TC while it was of category-5
intensity. As will be described in more detail in section
2b, the new wind radii datasets were restricted to cases
with coincident reconnaissance, leaving 255 cases for
the 34-kt winds, 170 cases for the 50-kt winds, and 120
cases for the 64-kt winds. These reconnaissance-based
sample sizes are nearly double the dataset from D04’s
previous work, in which the wind radii datasets were
developed using only Atlantic cases west of 55°W—a
restriction imposed because of the higher likelihood of
having in situ measurements in that region—as well as
Atlantic and east Pacific cases with reconnaissance.

b. Methods

The resolution of the AMSU data, which is 48 km at
best, is too coarse to resolve TC structure adequately.

FIG. 1. Distribution of tropical cyclone cases by basin for the
intensity estimation datasets. Shown is the dataset for MSW, with
n � 2637 cases. For MSLP, with n � 2624 cases, only the Atlantic
and east Pacific distributions are different, with 31.9% and 25.2%,
respectively.

1574 J O U R N A L O F A P P L I E D M E T E O R O L O G Y A N D C L I M A T O L O G Y VOLUME 45



Thus, parameters derived from the AMSU tempera-
ture, pressure, and wind retrievals are used to develop
an empirically based statistical model for estimating TC
intensity and winds in real time. As in D04’s earlier
work, 18 AMSU-derived parameters serve as potential
estimators along with LAT and VMXOP (for a list of
the parameters and their definitions, see Table 1), the
two non-AMSU-derived parameters; the latter param-
eter—the operational estimate of TC intensity—is used
only for estimating the wind radii. In addition to these
20 parameters, 4 additional estimators were added to
the predictor pool (Table 1) to try to better estimate the
stronger TCs, which the D04 algorithms typically do
not estimate well because of the coarse horizontal reso-
lution of the AMSU, and to better detect dissipating
storms. Three of the new variables are transformations
of other AMSU-derived variables. P600 is not AMSU
derived; this information is determined from the Na-
tional Centers for Environmental Prediction Global
Forecast System model. P600 is used as a boundary
condition for the AMSU pressure retrieval and, as
such, is used to derive PMIN and DP0, where P600 �
PMIN � DP0.

The dependent data for the TC intensity and wind

radii estimations are from National Hurricane Center
(NHC), Joint Typhoon Warning Center, and Central
Pacific Hurricane Center extended best-track1 data
within 6 h of the AMSU swath time, linearly interpo-
lated to the time of the swath. The 34-, 50-, and 64-kt
wind radii datasets were restricted to cases that had a
reconnaissance flight within 12 h prior, because esti-
mates of the wind radii can be grossly in error when in
situ observations are not available. The intensity
datasets were not restricted to cases with coincident
reconnaissance, because best-track estimates of inten-

1 The extended best-track data supplement standard best-track
position and intensity data, which are determined from postsea-
son analyses of all information available and are reported every 6
h, with operational estimates of TC size parameters (e.g., radii of
34-, 50-, and 64-kt winds, radius of maximum winds). The ex-
tended best track was prepared by M. DeMaria with partial sup-
port from the Risk Prediction Initiative. Both the best track and
the advisories containing wind radii information used to create the
extended best track come from the databases maintained in the
Automated Tropical Cyclone Forecast (Sampson and Schrader,
2000) databases at the National Hurricane Center and the Joint
Typhoon Warning Center. Applications of the extended best
track can be found in Kimball and Mulekar (2004).

TABLE 1. Potential estimators of tropical cyclone intensity and wind radii. The radius is denoted by r, where r � 0 km is the storm
center, and z is height. Except for the area-averaged CLWPER, all AMSU-derived parameters are azimuthally averaged. The LAT,
VMXOP, and P600 parameters are not derived from AMSU data.

Acronym Description

Twenty original potential estimators
PMIN Min surface pressure (hPa) at storm center
DP0 Pressure drop (hPa) at surface from r � 600 to 0 km
DP3 Pressure drop (hPa) at z � 3 km from r � 600 to 0 km
TMAX Max temperature perturbation (°C) calculated as the temperature at r � 600 km minus the temperature

at each radius
ZMAX Height (km) of max temperature perturbation (TMAX)
SS Cross-track resolution (km) of AMSU footprint at storm center
VMX0 Max wind speed (kt) at surface
RMX0 Radius (km) of max winds at surface
VMX3 Max wind speed (kt) at z � 3 km
RMX3 Radius (km) of max winds at z � 3 km
VBI0 Tangential winds at surface, averaged from r � 0 to 250 km
VBI3 Tangential winds at z � 3 km, averaged from r � 0 to 250 km
VBI5 Tangential winds at z � 5 km, averaged from r � 0 to 250 km
VBO0 Tangential winds at surface, averaged from r � 250 to 500 km
VBO3 Tangential winds at z � 3 km, averaged from r � 250 to 500 km
VBO5 Tangential winds at z � 5 km, averaged from r � 250 to 500 km
CLWAVE CLW content (mm), averaged from r � 0 to 100 km
CLWPER Percentage of area with CLW values � 0.5 mm from r � 0 to 300 km
LAT Lat from NHC at storm center, interpolated to AMSU swath time
VMXOP Operational estimate of max sustained winds (kt) from NHC

Four new potential estimators
TMAX2 Squared value of the max temperature perturbation (TMAX)
TMAX*CLWAVE Max temperature perturbation (TMAX) times the CLW content (CLWAVE)
CLWAVE2 Squared value of the CLW content (CLWAVE)
P600 Surface pressure (hPa) at r � 600, the edge of the analysis domain
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sities, unlike wind radii, are reasonably accurate and
doing so would have resulted in a much smaller set of
cases. Of that smaller dataset, the vast majority of cases
are from the Atlantic basin, only a handful are from the
east Pacific and west Pacific basins, and there are no
cases from the central Pacific, Indian Ocean, or South-
ern Hemisphere. Thus, the much larger, more repre-
sentative dataset is preferred.

1) INTENSITY ESTIMATION

Two algorithms are developed using AMSU data to
estimate intensity, one each for the MSW and the
MSLP. Again, in an attempt to better estimate the
stronger storms, the dependent data for both the MSW
and MSLP were transformed in several ways. The re-
sults indicated that the MSW are best estimated di-
rectly, with the MSW values as the dependent data.
However, the MSLP are best estimated indirectly; the
data first are subtracted from a set value of 1050 hPa,
then an algorithm to estimate the natural log of that
differenced value is developed, and then the MSLP is
reobtained.

To develop algorithms that estimate TC intensity, a
best-subsets multiple linear regression (Miller 2002)
technique was employed. This technique examines all
potential regression equation combinations up to some
N number of variables. For example, if there were three
independent variables, the best-subsets technique
would assess seven equations: three equations with
single estimators, three equations with two estimators
each, and one equation with all three estimators. The
advantage of this method over an automated technique,
such as stepwise regression, is that it allows the user to
see the regression results from all possible models and
to select the most appropriate model based on the us-
er’s criteria. The best-subsets technique was combined
with a cross-validation scheme to provide a more real-
istic assessment of the errors. To thoroughly evaluate
the models, the regression equations were developed
with 80% of the cases, chosen randomly, and tested on
the remaining 20% of the cases (Brieman and Spector
1992). This 80/20 cross-validation procedure was con-
ducted 1000 times for every possible model to ensure
robust estimates of error.

To develop the intensity estimation models, best sub-
sets were used to analyze all possible models having up
to 15 independent variables. The evaluation criteria in-
cluded 1) the minimization of the mean absolute error
(MAE), which has the same units as the dependent
variable so that there is physical meaning to the errors,
of both the developmental and the cross-validated
datasets, and 2) all estimators significant to 1% (� �

0.01). Based on these results, the best models were cho-
sen for estimating the MSW and MSLP.

2) AZIMUTHALLY AVERAGED AND ASYMMETRIC

WIND RADII ESTIMATION

As in D04’s previous work, the azimuthally averaged
wind radii of 34-, 50-, and 64-kt winds are estimated in
a manner similar to the intensity estimation. The aver-
aged wind radii values then were used in conjunction
with a simple wind model—a modified Rankine vortex
plus a vector proportional to TC motion—to estimate
the asymmetric wind structure in terms of the wind
radii in the northeast (NE), southeast (SE), southwest
(SW), and northwest (NW) quadrants of the TC. A
complete discussion of the asymmetric wind radii esti-
mation methods can be found in D04. The one differ-
ence, however, is that the dependent data for the azi-
muthally averaged dataset were established by averag-
ing only the quadrants for which nonzero wind radii
existed in the extended best-track data; previously, D04
took the average of all four quadrants, including those
for which no wind radii existed. Eliminating the quad-
rants with zero wind radii from the average removes
noise from the data for cases where the maximum wind
is close to the 34-, 50-, or 64-kt wind radii threshold. In
these cases, the wind radii in some quadrants rapidly
vary between zero and nonzero values as a function of
time.

The algorithms that estimate the azimuthally aver-
aged 34-, 50-, and 64-kt wind radii are developed with
the same methods as the intensity estimation algo-
rithms, that is, with a best-subsets multiple linear re-
gression combined with a cross-validation method that
uses 80% of the data for developmental purposes and
20% of the data for testing, which is run 1000 times for
each possible model. The evaluation criteria for the
wind radii regressions are 1) the minimization of the
MAE of the developmental and the cross-validated
datasets, as with the intensity estimation models, and
2) all estimators being significant to 5% (� � 0.05). A
less stringent significance level was used for the mean
wind radii estimations than for the intensity estima-
tions, because the smaller wind radii sample sizes made
it difficult to achieve robust regression models with the
more stringent significance level.

3. Intensity estimation results

The new regression equation for estimating MSW
retains 12 variables and explains 78.7% of the variance
(R2), and an additional variable is retained for estimat-
ing MSLP, explaining 80.2% of the variance (Table 2).
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Relative to D04, this is a 6.4% and 3.7% improvement
in the R2, respectively.

Seven parameters—DP0, TMAX, SS, RMX3, VBI5,
CLWAVE, and CLWPER—defined the model used in
D04 to estimate MSW and, with the addition of PMIN,
to estimate MSLP. Those same seven variables are re-
tained again, along with five additional variables (i.e.,
DP3, VMX3, VBO0, VBO3, and TMAX2), to estimate
MSW (Table 2). For the estimate of MSLP, the same
original seven variables and five new variables are re-
tained, but P600 now is retained in place of PMIN
(Table 2). As discussed earlier, P600 is a model-derived
boundary condition used to determine PMIN and DP0,
where P600 is the sum of those two parameters; thus,
any combination of two of these three variables pro-
vides the same information. P600 was chosen in place of
PMIN, even though the developmental regression re-
sults are the same for either parameter, because it is
easier to understand that P600 provides information
about the background pressure environment than the
combination of PMIN and DP0.

In Table 2, the normalized coefficients are indicative
of the relative weight each variable has in providing the
TC intensity estimates. For each variable, the normal-
ized coefficients for the MSW and MSLP models have
similar magnitudes. This similarity should be expected
because, as described previously, the MSLP variable is
actually the log of the difference in the central pressure
from 1050 hPa and therefore a larger value of MSLP
indicates a stronger storm, similar to MSW. The physi-
cal interpretation of the normalized coefficients in
Table 2 is complicated by the fact that the variables can
interact with each other. For example, DP0 and DP3
have the largest coefficients but have opposite signs.

Thus, it is really the difference between these two vari-
ables that is correlated with the intensity. The direct
relationship with intensity comes from the TMAX
(modified by TMAX2), VMX3, and VBI5 terms. A
warmer core and stronger retrieved maximum and av-
erage inner winds increase the intensity estimate. The
effects of SS and RMX3 are smaller, but also have a
direct physical interpretation. The intensity estimate is
increased when SS is large (a correction for lower data
resolution) and when RMX3 is smaller (more intense
storms tend to have a smaller radius of maximum
wind). The two moisture variables (CLWAVE and
CLWPER) interact but increase the intensity when the
CLW is generally higher. The remaining variables oc-
cur in pairs with opposite signs (DP0 with DP3 and
VBO0 with VBO3) and are related to the vertical struc-
ture of the retrievals. These variables probably provide
additional corrections resulting from attenuation,
which has a strong influence on the difference in the
retrieved variables between vertical levels. The P600
variable increases the MSLP (which lowers the central
pressure estimate) when the environmental pressure is
low.

The MAE and rmse for the new MSW estimation
model from the developmental dataset are 10.8 and
14.0 kt, respectively. For the new MSLP model, the
MAE is 7.8 hPa and the rmse is 11.6 hPa. The errors
stratified by TC intensity are given in Table 3. These
data show that the AMSU intensity estimation algo-
rithms work best on tropical storms (34–63 kt) and
weak hurricanes (64–95 kt); they tend to overestimate
the intensity of tropical depressions (�34 kt) and un-
derestimate the intensity of major hurricanes (�96 kt),
especially category-5 storms (�135 kt). If one looks

TABLE 2. Regression variables and statistics for estimating MSW (kt) and MSLP (hPa). For all of the independent variables, the p
value � 0.00000. The seven boldface variables were used to estimate MSW and MSLP in D04. The other variable used to estimate
MSLP in D04 was the AMSU-derived minimum pressure (PMIN), which is replaced here by P600.

Independent variable

Max sustained winds (kt) R2 � 78.7%, n � 2637 Min sea level pressure (hPa) R2 � 80.2%, n � 2624

Coef Normalized coef Coef Normalized coef

DP0 �4.334 59 �1.110 82 �0.042 60 �0.970 65
DP3 6.487 89 1.126 37 0.063 16 0.974 99
TMAX 6.287 01 0.433 77 0.073 95 0.453 39
SS 0.133 80 0.054 46 0.001 53 0.055 53
VMX3 0.496 35 0.262 16 0.005 37 0.251 66
RMX3 �0.027 13 �0.082 88 �0.000 29 �0.077 67
VBI5 1.726 08 0.375 44 0.016 81 0.324 63
VBO0 1.856 72 0.426 98 0.017 53 0.358 12
VBO3 �2.484 50 �0.509 46 �0.021 56 �0.392 37
CLWAVE 19.848 88 0.325 47 0.208 20 0.303 25
CLWPER �0.266 14 �0.209 32 �0.002 09 �0.146 20
TMAX2 �0.514 28 �0.308 71 �0.006 55 �0.349 72
P600 — — �0.011 45 �0.143 91
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only at the MSW estimation, the model tends to under-
estimate MSW during instances of rapid intensification
(defined here as at least 30 kt within 24 h). This oc-
curred 23 times, and the MAE of these cases is 23.4 kt
with a bias of �20.2 kt. This may be due to a lag in the
AMSU detecting changes in the warm core (i.e.,
TMAX) or the warming in the core being distributed
differently within rapidly intensifying storms.

An analysis of the errors for the MSW estimation
stratified by the six basins and by intensity is shown in
Table 4. The estimations for the Atlantic basin likely
are of higher skill because, of the 846 cases composing
the developmental dataset, 300 have coincident recon-
naissance, resulting in a better developmental dataset.
In comparison, it is possible that the larger errors for
stronger hurricanes in the east Pacific, Southern Hemi-
sphere, and west Pacific may be largely due to fewer in
situ observations in these basins. There are also basin-
specific possibilities for these larger intensity errors.
The east Pacific TCs can be smaller than those in other
basins, and Southern Hemisphere positional errors are
larger because forecast advisories are issued every 12 h
in that region, as opposed to every 6 h. For the central
Pacific and Indian Ocean, the datasets are made up of
very few cases, potentially making the error estimates

less representative. For example, there was only one
hurricane in the Indian Ocean, so the 29.7-kt error
shown in Table 4 is based on this case alone.

When comparing the error statistics from the new
intensity estimation models with those from D04, on
the surface it appears as though the new models result
in slightly greater errors (Table 5). However, testing the
intensity estimation models from D04 on the new, more
representative datasets provides a more direct assess-
ment of the errors. Applying the MSW model from D04
to the new data results in an MAE and rmse of 11.5 and
14.8 kt, respectively (Table 5), and applying the MSLP
model results in errors of 8.9 and 13.1 hPa (not shown
in Table 5), all of which are higher than the errors from
the new models. These results are consistent when ex-
amining the errors stratified by TC intensity. A specific
analysis of the category-5 storms shows that the D04
model estimates of MSW are in error by an average of
4 kt more than the new MSW model estimate (MSLP
by 15 hPa; not shown). Thus, the new intensity estima-
tion models are better overall than the D04 models,
and they are especially better at estimating stronger
TCs, in part because the new datasets include several
cases of category-5 intensity, whereas the D04 dataset
had none.

TABLE 4. Mean absolute error statistics (kt) for the estimates of MSW, stratified by tropical cyclone intensity and by basin.

Atlantic Central Pacific East Pacific Indian Ocean Southern Hemisphere West Pacific

Tropical depressions (�34 kt) 7.8 9.7 9.3 15.8 13.7 9.4
Tropical storms (34–63 kt) 8.8 8.8 9.5 13.4 10.3
Category 1 (64–82 kt) 10.7 14.2 29.7 12.8 11.2
Category 2 (83–95 kt) 8.3 14.2 11.0 13.2
Category 3 (96–113 kt) 9.2 18.0 17.9 11.8
Category 4 (114–135 kt) 13.8 32.1 20.8 13.7
Category 5 (�135 kt) 16.2 32.5 31.8 29.7

TABLE 3. Error statistics for the estimates of MSW and MSLP, stratified by tropical cyclone intensity. The statistics for the
hurricane-strength storms are shown all together and stratified by the categorical intensity based on the Saffir–Simpson scale.

MSW MSLP

MAE Rmse Bias* MAE Rmse Bias*

Tropical depressions (�34 kt) (MSW: n � 686; MSLP: n � 675) 9.2 11.5 7.7 4.8 6.1 �3.3
Tropical storms (34–63 kt) (MSW: n � 1083; MSLP: n � 1084) 9.6 12.0 0.1 5.7 7.6 �0.5
All hurricanes (�64 kt) (MSW: n � 868; MSLP: n � 865) 13.6 17.7 �6.2 12.7 17.4 6.2
Category 1 (64–82 kt) (MSW: n � 322; MSLP: n � 316) 11.7 14.7 �0.1 9.4 12.3 0.2
Category 2 (83–95 kt) (MSW: n � 164; MSLP: n � 165) 11.7 14.8 �3.4 10.4 13.3 2.8
Category 3 (96–113 kt) (MSW: n � 185; MSLP: n � 187) 12.5 17.5 �7.4 12.2 17.1 7.5
Category 4 (114–135 kt) (MSW: n � 152; MSLP: n � 152) 16.6 21.2 �14.4 17.5 21.8 13.7
Category 5 (�135 kt) (MSW: n � 45; MSLP: n � 45) 27.4 31.7 �27.4 30.7 36.3 30.1

* Bias is the average estimated values minus the average observed values. For MSW, a positive bias means the intensity was overes-
timated; for MSLP, a positive bias means the intensity was underestimated.
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4. Wind radii estimation results

a. Azimuthally averaged wind radii

Unlike the updated intensity estimation models,
which employed all of the same estimative parameters
as in D04, the revised azimuthally averaged wind radii
estimation models differ considerably from the old ver-
sions. This probably is due to the previous datasets be-

ing less representative because of their smaller sample
sizes and their not being composed solely of cases co-
incident with reconnaissance data to ensure more accu-
rate observations. As such, the new models are more
robust, as is shown by their improved error statistics.

The final regression equations for the 34- and 50-kt
mean wind radii each retain 10 variables, and the 64-kt
mean wind radii equation retains 9 variables (Table 6).

TABLE 6. Regression variables and statistics for estimating the azimuthally averaged radii of 34-, 50-, and 64-kt winds (n mi). The
boldface variables were used to estimate the wind radii in D04. Variables in the mean wind radii models from D04 that are not in the
revised models are for 34-kt: VBI5, LAT, and VMXOP; for 50-kt: VMX3 and VBO5; for 64-kt: TMAX and VMXOP.

Independent variable Coef Normalized coef p value

Azimuthally averaged 34-kt wind radii (n mi) R2 � 78.4%, n � 255
PMIN �1.674 23 �0.374 16 0.000 46
DP0 3.462 38 0.696 20 0.000 00
TMAX 10.410 16 0.578 68 0.000 88
SS 0.389 38 0.095 91 0.004 22
VMX0 �0.678 77 �0.277 36 0.006 51
RMX0 0.090 78 0.179 46 0.000 00
CLWAVE �39.641 86 �0.436 84 0.007 54
CLWPER 0.300 49 0.138 51 0.022 38
TMAX*CLWAVE �8.813 19 �0.949 82 0.000 03
CLWAVE2 30.625 60 0.751 96 0.000 84

Azimuthally averaged 50-kt wind radii (n mi) R2 � 78.2%, n � 170
DP0 2.563 01 0.661 79 0.000 02
TMAX 6.850 88 0.472 42 0.002 92
VMX0 0.895 70 0.447 40 0.039 51
RMX0 0.063 95 0.140 58 0.002 19
VBI0 �5.545 25 �1.154 23 0.011 45
VBI3 13.592 24 2.619 95 0.014 56
VBI5 �13.044 93 �2.416 42 0.001 50
CLWAVE �18.610 25 �0.233 77 0.001 51
CLWPER 0.274 42 0.145 57 0.027 18
VMXOP 0.491 01 0.360 35 0.000 02

Azimuthally averaged 64-kt wind radii (n mi) R2 � 86.4%, n � 120
SS 0.375 89 0.170 91 0.000 01
VMX0 2.105 60 1.478 16 0.000 00
VMX3 �2.525 43 �1.622 24 0.000 09
VBI0 �4.118 99 �1.160 41 0.002 45
VBI3 6.622 36 1.658 12 0.002 09
VBO3 1.754 55 0.444 03 0.022 99
VBO5 �1.949 06 �0.432 20 0.052 54
CLWPER 0.152 21 0.113 10 0.039 41
TMAX2 0.457 19 0.513 78 0.000 00

TABLE 5. Comparison of model performance for estimating MSW (kt) among the D04 model (old model) applied to the D04
developmental dataset (old data), the D04 model applied to the revised dataset (new data), and the revised model (new model) applied
to the revised dataset. Errors are shown for the whole datasets and stratified by tropical cyclone intensity. The errors for all hurricane-
strength storms are shown as well as the errors specifically for the category-5 storms.

Old model on old data Old model on new data New model on new data

MAE Rmse MAE Rmse MAE Rmse

All tropical cyclones 10.6 13.5 11.5 14.8 10.8 14.0
Tropical depressions (�34 kt) 9.6 11.8 10.3 12.9 9.2 11.5
Tropical storms (34–63 kt) 9.1 11.4 10.5 13.0 9.6 12.0
All hurricanes (�64 kt) 13.3 17.0 13.7 17.9 13.6 17.7
Category 5 (�135 kt) — — 31.3 35.0 27.4 31.7
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The normalized coefficients for the wind radii are more
difficult to interpret physically than those for the inten-
sity estimation because there is more interaction among
the independent variables. The SS and RMX0 variables
have a direct relationship, increasing the radii for large
SS (resolution correction) and when RMX0 is large.
The radii also increase for larger TMAX, although
there is some interaction with CLWAVE for the 34-kt
radii. This relationship probably represents the increase
in storm radii when the storm becomes more intense.
For the 50-kt radii, the combination of the VMXOP
and TMAX terms represents this same effect. For the
64-kt radii, larger CLWPER values are related to larger
radii; this might be expected, because larger storms
tend to have larger cloud regions. The relationship with
the CLW variables is more difficult to interpret for the
34- and 50-kt winds, because there is considerable in-
teraction with other terms. Similar to the intensity co-
efficients, there are several variables that have similar
coefficients but opposite signs, which probably is re-
lated to attenuation effects.

The mean 34-kt algorithm explains 78.4% of the vari-
ance, and it results in an MAE of 16.9 n mi and an rmse
of 21.4 n mi (1 n mi � 1852 m). For the mean 50-kt wind
radii, 78.2% of the variance is explained, and the MAE
and rmse are 13.3 and 17.3 n mi, respectively. Last, the
mean 64-kt wind radii algorithm explains 86.4% of the
variance and results in an MAE and rmse of 6.8 and 8.9
n mi, respectively. The improved errors from the up-
dated models in comparison with those from the mod-
els from D04 are shown in Table 7.

b. Asymmetric wind radii

The improved azimuthally averaged wind radii esti-
mates lead to improved estimates of the wind radii in
the NE, SE, SW, and NW quadrants of the TC. Figure
2 shows the MAE of each wind radii by quadrant based
on the revised models and the D04 models. Although
there are only slight improvements in the NE quadrant,
which averages the largest wind radii of all four quad-
rants for all three wind thresholds, the radii in the other
three quadrants improve substantially.

5. Summary and conclusions

This research was a follow-on to previous work con-
ducted by Demuth et al. (2004) to improve the estima-
tion of tropical cyclone intensity (i.e., in terms of the
maximum sustained winds and minimum sea level pres-
sure) and wind structure (i.e., in terms of the radii of
34-, 50-, and 64-kt winds in the northeast, southeast,
southwest, and northwest quadrants of the storm) using
parameters derived from AMSU data. In their original
work, Demuth et al. only had data from tropical cy-
clones in the Atlantic and east Pacific basins from 1999
through 2001 on which to develop their algorithms. An
additional 3 yr of data, as well as data from tropical
cyclones in the central and west Pacific basins, Indian
Ocean, and Southern Hemisphere, provide a much
larger and more representative sample set. The added
data more than quintupled the prior dataset for inten-
sity estimation. The mean wind radii datasets, which are
2 times as large as before, are based entirely on cases
coincident with aircraft reconnaissance within 12 h
prior. Moreover, the mean wind radii were calculated
without averaging quadrants with zero wind radii, im-

FIG. 2. Comparison of MAE for asymmetric 34-, 50-, and 64-kt
wind radii between revised algorithms (new) and D04 algorithms
(old). The concentric circles represent increasing error from the
center of the graph at 5 n mi increments.

TABLE 7. Comparison of variance explained (R2) and error statistics (MAE and rmse) for azimuthally averaged 34-, 50-, and 64-kt
wind radii between revised algorithms (new model) and D04 algorithms (old model).

Azimuthally averaged 34-kt wind radii Azimuthally averaged 50-kt wind radii Azimuthally averaged 64-kt wind radii

New model Old model New model Old model New model Old model

R2 78.4% 71.9% 78.2% 65.9% 86.4% 80.8%
MAE 16.9 21.2 13.3 17.9 6.8 8.0
Rmse 21.4 28.3 17.3 23.3 8.9 10.1
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proving the mean radii estimates, which, in turn, im-
proves the asymmetric wind estimates. The intensity
and azimuthally averaged wind structure estimation
models were developed using a best-subsets technique,
which analyzes all possible combinations of up to 15
independent variables. Every model was cross vali-
dated 1000 times by using 80% of the cases, randomly
chosen, for development and using the remaining 20%
of the cases for testing. Overall, the larger datasets and
modified methods result in superior estimates of inten-
sity when compared with D04, especially for stronger
TCs and wind structure.

These revised algorithms were introduced to opera-
tions at the National Hurricane Center/Tropical Predic-
tion Center (NHC/TPC) during 2005, where they will
provide objective and independent TC intensity esti-
mates. The results generated at NHC will be provided
to all U.S. operational tropical cyclone forecast centers
using data from the NOAA-15, -16, and -18 satellites.
There are no current plans to revise these algorithms
further using AMSU data. However, a new NOAA sat-
ellite system, the National Polar-orbiting Operational
Environmental Satellite System (NPOESS), is slated
for launch in 2009. On NPOESS will be the Cross-Track
Infrared Sounder (CrIS) and the Advanced Technology
Microwave Sounder (ATMS). Denoted jointly as
CrIMSS, this sensor suite will provide global profiles of
temperature, moisture, and pressure, which could be
used for future TC applications.
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