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Abstract

Annual hurricane counts are analyzed using a Markov chain Monte Carlo change-point
model. The approach simulates marginal posterior distributions of the Poisson rate pa-
rameter using the Gibbs sampler algorithm. The paper is expository. Procedures are first
employed on a recently debated time series of major North Atlantic hurricanes. Results con-
firm our earlier findings that show significant shifts in major North Atlantic hurricane rates
during the middle 1940’s, the middle 1960’s, and 1995. The methodology is then applied to
annual counts of U.S. hurricanes. Results are consistent with a homogeneous Poisson pro-
cess showing no abrupt changes to overall coastal hurricane rates during the 20th century.
In contrast, the Florida hurricane record indicates consecutive downward shifts first during
the early 1950’s and again during the late 1960’s. No significant rate shifts are noted for
Gulf or East coast hurricane activity. With a slight modification, the Gibbs sampler is then
used to examine climate influences on coastal hurricane activity. Results show a significantly
lower U.S. hurricane rate during El Nino events and during the negative phase of the North
Atlantic oscillation. The ENSO effects are most pronounced over Florida while the NAO

effects are most pronounced along the Gulf coast.



1. Introduction

Applied climate research relies heavily on singular value decomposition (SVD) methods for data
analysis and prediction. Techniques include empirical orthogonal functions (EOFs), singular
spectrum analysis (SSA), canonical correlation analysis (CCA), factor analysis (FA), among
others. These tools identify the largest portion of the temporal and/or spatial variability (dom-
inant modes) in the observations or model output. Typically the objective is to reduce the
dimension of a data set by considering a projection of the original values onto the dominant
modes of variability. The reduced data set is then further analyzed using one of a variety of
tools, including regression analysis. SVD techniques are often employed to describe trends and
oscillatory behavior in climate. In these cases the underlying physical model of the climate
assumes stationarity, and the oscillations are considered regularly varying against a background
of correlated noise.

Contemporary understanding of the nature of global climate processes, including the El Nino-
Southern Oscillation (ENSO) and the North Atlantic Oscillation (NAO) among others, suggest
that climate may operate in two or more quasi-stationary states (Lockwood 2001; Tsonis, et
al. 1998; Tsonis and Elsner 1990; Berger and Labeyrie 1987). Transitions between different
climate states may occur rather abruptly rather than slowly varying as a consequence of the
dissipative, non-linear, and non-equilibrium properties of the climate system (Vannitsem and
Nicolis 1991). Under this scenario successive climate shifts may result in an observable that
appears to have a low frequency oscillation. A more precise description might be randomly
occurring change-points. In this case SVD-type data analytic tools are less appropriate as they
assume stationarity and regularly varying changes. In short, climate research methods need to
be consistent with the underlying physical model of the climate process.

Change-point models are used to quantitatively identify and describe shifts to climate vari-
ables. This is important in the context of studying climate variability and change (Solow 1988),
but it also has relevance in pinpointing potential inhomogeneities in climate records arising from
improved observational technologies and changes in the station location. This has utility for the
weather derivative market which relies on homogeneous records for estimating call and put op-
tions. Here we show that a statistical change-point model provides an alternative tool for data
analytical climate studies; a tool which is consistent with a physical climate model supporting
abrupt rather than slowly varying transitions. Change-point models are used to study climate
variations, but their lack of widespread appeal might be related to the often ad hoc decisions
necessary for their application. This limitation is less severe with a Markov chain Monte Carlo
(MCMC) approach. For instance, Elsner et al. (2000a) use a log-linear regression approach
to detect change points in the time series of annual counts of North Atlantic major hurricanes
during the period 1900-99. A similar approach is employed by Chu (2002) in examining hur-
ricanes that visit the central North Pacific. The assumption is the annual count of hurricanes

or major hurricanes, after a logarithm transformation, is approximately normally distributed.



This distribution limitation disappears with a MCMC approach which can be applied directly
to non-normal distributions.

MCMC change-point analysis has received considerable attention from statisticians and en-
gineers. A thorough treatment of its utility for hydrological data is presented in Perreault et
al. (2000a, b). Beyond this the broader climatological community has yet to make use of these
approaches. Our purpose here is twofold: (1) To introduce to a wider meteorological audience
some of the essential ideas behind this data analytic approach; and (2) To shed additional light
on the problem of hurricane climate changes. It is important to stress that this work is not
an argument that change-point models are superior to SVD techniques. Both are important in
climatic data analysis and both play a role depending on the purpose at hand. The essential
message here is that change-point modeling can provide new insights into climate variability not
accessible with SVD methods, and with the MCMC approach, some of the subjective decisions
typically associated with change-point models can be dispensed with in favor of easier interpre-
tation. Our purpose is to illustrate the utility of the approach by applying a particular MCMC
algorithm to the problem of detecting and quantifying shifts in the rates of coastal hurricane
activity. In section 2 we outline the basic philosophy of the Bayesian approach to change-point
modeling. In section 3 we apply the algorithm to the annual counts of major North Atlantic
hurricanes. In section 4 the approach is applied to time sequences of coastal hurricane activ-
ity. In section 5 we show how the method can be used to examine covariate relationships. In
particular we examine the influence of the El Nifio-Southern Oscillation (ENSO) and the North
Atlantic Oscillation (NAO) on coastal hurricane activity. Section 6 provides a summary and

final comments.

2. The MCMC Approach

a. Statistical inference

The MCMC approach is rooted in a Bayesian perspective. To help focus on this perspective it
is useful to consider first the general problem of statistical inference, which plays an important
role in climate science. Given a sample of data (from the climate or its simulation), what
conclusions can be made about the entire ‘population?’ Inference about the statistical model
can be formalized as follows: Let 8 be a population parameter, then statistical inference amounts
to a supposition about 6 on the basis of observing the data. We contend that values of § which
give high probabilities to our specific data y are more likely than those which assign y low
probability (maximum likelihood principle). In essence the inferences are made by specifying a
probability distribution of y, f(y|@), for a given value of 6.

If we treat 6 as a constant we are in the domain of classical statistical theory. The difference
for Bayesian inference is that 6 is treated as a random quantity, and our inference is based on

p(fly), a probability distribution of 6 for a given data y, rather than on f(y|f). This seems



quite natural as we are interested in the probability distribution of the parameter given the
data, rather than the data given the parameter. The cost of this, more natural approach, is
that it is necessary to specify a prior probability distribution, (@), which represents our beliefs
about the distribution of 8 before we have any information from the data. Thus, in the Bayesian
approach we combine the likelihood distribution of the data given the parameter with the prior
distribution to obtain:
ool — T
[ f(ylu)m(u)du
which is called Bayes’ theorem. Having observed y, Bayes’ theorem is used to determine the
distribution of 8 conditional on y. This is called the posterior distribution of 8, and is the subject
of all Bayesian inference.
Any feature of the posterior distribution is legitimate for inference, including moments,
quantiles, p-values, etc. These quantities can be expressed in terms of the posterior expectations

of functions of 6. The posterior expectation of a function g(6) is

S g(0)m(0)f(y|0)do
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The integrals in the above expression are a source of practical difficulties in Bayesian infer-

ence, especially for more complex problems. Moreover, in most applications, analytic evaluation
of the expected value of the posterior density is impossible. Since numerical approximation
methods are difficult to employ in a general way, Monte Carlo integration methods have become
popular.

Monte Carlo integration evaluates E[g(y)] by drawing samples {ys, s = 1,..., N} from a
probability density p(.). An asymptotic approximation is given by

1o
Elgw)] ~ 55 2_ 9(us)-

s=1

Thus the population mean of g(y) is estimated by a sample mean. An invariant posterior
distribution is guaranteed because the Monte Carlo sampling produces an irreducible Markov
chain. The key here is that N is controlled by the analyst; it is not the size of a fixed data
sample (Gilks et al. 1996).

b. Gibbs sampler algorithm

A common MCMC procedure is the so-called “Gibbs sampler.” Let g = (01,02,...,6,) be a
p-dimensional vector of parameters and let p(é]y) be its posterior distribution given the data y.

Then the Gibbs sampler is given as:
1. Choose an arbitrary starting point 60 = (9%0), 9;0), el 91(,0))’, and set i = 0.

2. Generate 0U+D) = (9D ol ol Dy a5 follows:



e Generate GYH) ~ p(91|9§i), cees 1(ai)73/)§
o Generate 05”1) ~ p(92|0§i+1), 9§i)7 sy I(7i)7 Y);

o Generate 5T ~ p(6,105 1, 65 L6t ).

3. Set =1+ 1, and go to Step 2.

In this way each component of  is visited in order and a cycle through the scheme results in
a sequence of p random numbers (Chen et al. 2000). Under general conditions the sequence of s
forms a Markov chain, and the stationary distribution of the chain is the posterior distribution.
Typically, the chain is run for a large number of generations until the sample output is stable.
A large number of additional generations are run, the output of which is analyzed as if it were

a sample from the posterior distribution (Coles 1999).

3. North Atlantic Major Hurricane Activity

A hurricane is a tropical cyclone with maximum sustained (one-minute) 10 m winds of 33 ms~!

(65 kt) or greater. A major hurricane is one in which winds exceed 50 ms~! (category 3 or higher
on the Saffir/Simpson hurricane destruction potential scale). The long-term average number of
major hurricane over the North Atlantic is close to two per year. Landsea et al. (1996) note
a downward trend in the occurrence of these powerful hurricanes. In contrast, Wilson (1999)
suggests a possible increase in activity beginning with 1995. The classical change-point model
employed by Elsner et al. (2000a) shows indeed that 1995 is the start of the most recent epoch
of greater major hurricane activity.

We begin our applications of the MCMC change-point model by revisiting this case. As
in Elsner et al. (2000a) we consider 1900 as the first year of the record. It is understood that
annual counts are likely biased prior to 1943 before the advent of aircraft reconnaissance, but
the intention here is to identify shifts in the time series of annual counts regardless of their
origin (natural or artificial). In fact one of the points made by Elsner et al. (2000a) is that, if
the model is worthwhile it should detect a shift in activity during the middle 1940s. Landsea
(1993) argue that an overestimation of hurricane intensity might have occurred even after 1943
during the period spanning the 1940s through the 1960s. Since there is still debate on this issue,
and since corrections have yet to be made in the best-track data set, we do not consider the
effect of this potential bias in the present study. In any event this decision does not influence

the work presented here.



a. MCMC' change-point algorithm

Given a time series of annual major hurricane counts, a change point occurs in the series if at
some point t the values come from a distribution with a common rate up to that time and come
from the same distribution but with a different rate afterward. The change-point separates the
series into two parts, and we define the change-point year as the first year of the new epoch.
Thus in a series of n annual counts, if a change is detected between year k and k + 1, we say
that k + 1 is the change-point year.

An algorithm for detecting change points using a Markov chain Monte Carlo Gibbs sampler
consists of two steps. Step one uses the entire record to determine candidate change points based
on the expected value of the transition kernel of the Markov chain as a function of year. Higher
mean values indicate candidate change-point years. A plot of the expected values as a function
of year along with a 95th percentile line identifies the candidate years. Step two determines
the posterior distributions of the relevant statistics before and after the candidate change point.
The fraction of the posterior density of A\, — Ay > 0 (or A\, — Ay < 0) provides evidence against
the hypothesis of no rate difference. From a frequentist perspective this amounts to a p-value
against the null hypothesis of no change. As with all output associated with the Markov chain,
the p-value is a random variable so additional runs are used to obtain ensemble averaged values.

For the present problem we are interested in two parameters; the hurricane rates before and
after some change point. Let A= (Aa, A\p) be a vector of two parameters, where A, is the mean
hurricane rate after the change and )p is the mean hurricane rate before the change and we
wish to simulate from the posterior f (S\\y) as described previously. More specifically, the data
are counts (Y;) of the annual number of major hurricanes observed over the North Atlantic each
year during the period 1900-2001 (n = 102). Thus the model describes a Poisson number of
hurricanes per year with a mean rate Ay during years ¢ = 1,...,k and a different mean rate A,

during years i = k 4+ 1,...,n. Formally the Poisson/Gamma model is given as:
Y; ~ Poisson(N\y); i1=1,...,k;

Y; ~ Poisson(N\,); i=k+1,...,n;

where A\, ~ Gamma(ag, £1), Ay ~ Gamma(ag, 2), k is discrete uniform over {1,...,101}, each
independent, and (31 ~ Gamma(y, €1) and 33 ~ Gamma(ys, €2) (Coles 1999). This specification

leads to the following conditions:

k
Mo|Y g, B, B2, k ~ Gamma <Oé1 +> Vi k+ 51)

i=1

)‘a‘Yv Ab)ﬂlaﬁ?vk ~ Gamma<a2 + Z Yivn —k + /82>
i=k+1

B1]Y, Xps Aa, B2, k ~ Gamma(aq + 1, \p + €1)



62“/7 )\bv Aav 617 k ~ Gamma(OQ + 2, )\a + 62)

and
L(Y; Kk, Ay, Aa)

J=1 L(Y3 5, Ap, Aa)

p(k‘Y7 >\b7 >\a7 /617 ﬁ2> =

where the likelihood function is
L(Y — koy,
( ik, )\b,)\a) exp{k()\a /\b)}<)\b/Aa)Zi:1 i

Starting with some initial (prior) values for a, ag, 71, 72, €1, and €3 the Gibbs sampler generates
sequences of A\, and A, which form Markov chains. The stationary distributions of the chains

are the posterior distributions for each of the parameters.

b. Practical considerations

There are several practical issues that need to be addressed. First is the definition of years
relative to the suspected change point. In the above model specification year k is the last year
of the old epoch with k + 1 the first year of the new epoch. To be consistent our earlier results
(Elsner et al. 2000a) we plot the change-point as the first year of the new epoch and refer to
this year as the change-point year.

Second is the choice of starting (or initial) values. In theory if the chain is irreducible meaning
that it can reach any non-empty set with positive probability, then the choice of initial values
will not influence the final stationary (invariant) posterior distribution. Since the Poisson rate
parameter is Gamma(ca, 3) with mean /3 and variance a/3%, we choose a; = as = 0.3 and
v1 =72 = 0.1, and €; = e = 1 as our starting values. Thus the mean values for §; and (32 are
0.1/1 = 0.1 and the mean values for A\, and A, are 0.3/0.1 = 3, which is close to the average
annual number of major hurricanes per year. In practice it is useful to perform a number of
simulations with different starting values to check if the posterior distribution is sensitive to the
choice of initial values. Results from these simulations are given in the next section.

Third is the issue of chain length and burn-in. If the chain is irreducible, aperiodic, and
positive recurrent then it will converge to a stationary posterior distribution (Roberts 1996). In
practice the chain is run for a large number of iterations until the sample output is stable with the
first hundred or so iterations discarded as “burn-in” and the remain values considered samples
from the stationary distribution. The length of burn-in depends on the initial values and the
rate of convergence, which is related to how fast the chain mixes. Developing rigorous criteria
for deciding chain length and burn-in requires a detailed study of the convergence properties of
the chain (Jones and Hobert 2001) that is beyond the scope of the present work. Trial-and-error
using visual inspection of the chain’s output is a commonly used method for determining length
of burn-in, and it is the one adopted here. Using the above prescribed initial values, the Gibbs
sampler change-point algorithm is run on the annual counts of major North Atlantic hurricanes

(1900-2001) with values of 31 and (2 plotted for each iteration (Figure 1). Convergence is quick.



The distribution of values for both 5 and G2 do not appear to change as the chain is run for
a greater number of iterations. This is typical. However, it is still good practice to remove the
early iterates to allow the chain to ‘forget’ its starting position. Throughout the present work
we choose a burn-in of 50 iterations and estimate the posterior distribution from the next 1000
iterations.

Fourth is the issue of statistical significance. Even if the time series of annual counts comes
from a homogeneous Poisson process implying no rate shifts, a sequence of random values gen-
erated from such a process might result in a series that has one or more change points. Thus
we need to compare the results of the analysis on our observed time series against the null
hypothesis of no change point. To do this, we generate a set of 1000 surrogate time series from
a homogeneous Poisson process with the rate equal to the average number hurricanes observed
over the 102-year period. We then run the Gibbs sampler as before (1050 iterations discarding
the first 50 as burn-in) on each of the surrogate series. The confidence level associated with each
of the individual years being a change-point must be adjusted upward to produce a simultaneous
confidence level across the entire period. It makes little sense if each year is the start of a new
epoch as then each epoch would last only a single year. Realistically we assume that an epoch
lasts a decade so that the confidence level of m = n/10 individual epochs are adjusted upward to
the 99.5th percentile. This procedure provides a simultaneous 95% confidence level as an appli-
cation of the Bonferroni inequality in probability theory. The simultaneous confidence interval
is a baseline for identifying candidate change-point years. Note we could sample the assumed
homogeneous Poisson rate and then use the rate to generate random Poisson samples. However,
the annual probability of a change point depends more on record length then on variation in the
rates. In fact, for this study we use a single Bonferroni confidence level irrespective of the rates.

The confidence level is re-estimated when we consider a shorter record.

c. Results

Figure 2 shows the results from the MCMC change-point algorithm applied to the annual counts
of major North Atlantic hurricanes during the period 1900-2001. The expected value of the
transition kernel of the Markov chain p is plotted as a function of year. The expected value
represents the average posterior probability of the year being the first year of a new epoch.
Large probabilities indicate a change occurred with year t. The dashed line shows the 95%
simultaneous confidence line against the null hypothesis of no change point generated from 103
simulations of a homogeneous Poisson process with rate parameter equal to the mean number of
major hurricanes over the period 1900-2001. The line is smoothed using a 5-year normal kernel
smoother. Years with probabilities above the 95% simultaneous confidence line include 1906,
1943, and 1995. Note that several years around 1943 are also candidate change-point years. This
indicates that although the algorithm chooses 1943 as the most likely year of the new epoch there
is statistical uncertainty associated with whether the new epoch begins with 1943 or 1944. This



is not the case with 1995 or 1906 where no other years appear to be in contention. Also note that
years near the beginning and end of the record require substantially larger posterior probabilities
to surpass the nominal significance level. The U-shaped confidence level indicates that there is
a greater uncertainty (larger variance on the posterior probabilities) about candidate change-
points close to the record end points. Caution is warranted when interpreting large probabilities
on these years as the chance of a false detection is greater. Ensemble runs as discussed below
can help in this regard.

As previously mentioned it is important to examine the influence the choice of initial values
has on the average posterior probability and thus the selection of candidate years. This is done
here by running the Gibbs sampler algorithm 30 times for each value of the « priors equal to
0.1, 0.3, 0.5, and 0.7. The algorithm is run using 1050 iterations with the first 50 discarded
as burn-in. Figure 3 shows the distribution of probabilities for the candidate years using box
and whisker plots. Overall the results demonstrate that the choice of prior values is not a
critical factor in identifying candidate years as the chain quickly finds a stationary distribution
regardless of where it is started. Variability in the average posterior probabilities is largest for
candidate years 1906 and 1995. As noted above, this results from the fact that these years
are near the beginning and end of the time series. Posterior probability distributions based on
relatively few data points will have a greater spread.

The MCMC change-point algorithm continues by checking the significance of the candidate
change-point years. We look first at 1943 since the jump in annual major hurricane counts at
this time is most likely due to the use of aircraft reconnaissance investigations (Neumann et
al. 1999; Jarvinen et al. 1984). Posterior density estimates of the relevant statistics (51, a2,
Aas Ab, and Ay — A\p) from the Gibbs sampler are shown in Fig. 4. We focus on the probability
densities of the annual hurricane rate parameters before and after (including) 1943. Densities
are smoothed versions of the histograms and are based here on a normal kernel with bandwidth
equal to 4 times the standard deviation of the values (Venables and Ripley 1999).

The Gibbs sampler is run 30 times to get an ensemble average of the mean Poisson rate before
(\p) and after (\,) the change point. The ensemble average of the mean rate parameter is 1.51
before 1943 and 2.51 thereafter. The posterior densities of the rate parameters indicate little
overlap implying a significant rate increase beginning with the 1943 season. This is examined
directly by considering the posterior density of the rate differences. Only a negligible fraction
of the posterior distribution of A, — Ap is less than zero. The number of differences less than
zero provides a one-sided p-value as evidence against the hypothesis of equal rates before and
after 1943. The ensemble average p-value is less than 0.001. There is convincing evidence of a
rate difference. As stated above the increase in observed activity starting in the middle 1940s is
likely due in part to the start of aircraft reconnaissance. Therefore we continue the investigation
of major hurricane activity by examining the record only from 1943 onward.

Figure 5 shows the results from the MCMC change-point algorithm applied to the annual
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counts of major North Atlantic hurricanes during the period 1943-2001. Both 1965 and 1995 are
years with high probabilities. Additional high probability years clustering around 1965 include
1962, 1966, and 1967. Estimates of the posterior densities relative to 1965 are shown in Fig. 6.
As was done before the Gibbs sampler is run 30 times to get an ensemble average of the mean
Poisson rate before ()\,) and after ()\,) the change point. The ensemble averaged mean rate is
3.41 before 1965 and 1.97 thereafter. The posterior densities of the rates indicate little overlap
implying a significant decrease in activity beginning with the 1965 season. The ensemble p-value
against the null hypothesis of no rate change is less than 0.001. Similar results are obtained
for 1962, 1966, and 1967 indicating that the decline in abundance of major North Atlantic
hurricanes might have begun as early as 1962 or as late as 1967 with the most likely year being
1965.

Next we consider 1995. Estimates of the posterior densities are shown in Fig. 7. The
ensemble averaged mean hurricane rate before 1995 is 1.98 and 3.57 thereafter. The density for
the hurricane rate since 1995 () is considerably flatter owing to the relatively few years of data
in the record following this year (7). The greater uncertainty about the annual rate at the end
of the hurricane record creates more overlap on the rate distributions and thus a larger p-value
on the rate difference. Even still, evidence is convincing that 1995 represents an upward shift in
hurricane activity.

Thus a picture emerges of significant quantifiable shifts in the frequency of major North
Atlantic hurricanes during the 20th century. The results for the middle 1940’s, 1965, and
1995 are consistent with results obtained using a non-probabilistic change-point model (Elsner
et al. 2000a). Beginning with the era of aircraft surveillance, we see that major hurricanes
occurred at an average annual rate of nearly 3.5 per year. The rate dropped significantly to
about 2 major hurricanes per year beginning sometime during the middle 1960’s with the new
epoch most likely starting with the 1965 season. This modern era of fewer major hurricanes
ends abruptly with the 1995 season. For the next seven seasons through 2001 the mean rate is
more than 3.5 hurricanes per year. The advantage of the probabilistic model is that it provides
natural uncertainty estimates on the rates before and after the change-point. It also provides
ensemble estimates of rate differences and p-values. We now turn our attention to a systematic

examination of change points in U.S. hurricane activity during the 20th century.

4. U.S. Hurricane Activity

In the previous section we demonstrate the change-point algorithm by applying it to major
hurricanes activity over the entire North Atlantic basin. Here we apply the methodology to
records of U.S. hurricane activity. We are unaware of change-point studies on these records.
Hurricane landfall occurs when all or part of the eye wall (the central ring of deep atmospheric

convection, heavy rainfall, and strong winds) passes directly over the coast or adjacent barrier
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island. A U.S. hurricane is a hurricane that makes at least one landfall. A reliable list of the
annual counts of U.S. hurricanes back to 1900 is available from the U.S. National Oceanic and
Atmospheric Administration (Neumann et al. 1999). These data represent a blend of historical
archives and modern direct measurements. An updated climatology of annual coastal hurricane
activity is given in Elsner and Kara (1999) and Elsner and Bossak (2001).

a. Querall activity

We consider first overall U.S. hurricane activity. The annual time series of U.S. hurricane counts
appears to be stationary over the period (Elsner and Kara 1999). The lag-one autocorrelation
is a negligible —0.02. Figure 8 shows the probability of each year being a change-point in the
series. In contrast to the posterior probabilities computed above from the series of annual major
hurricane counts, the probabilities computed based on counts of U.S. hurricanes are considerably
lower and all below the simultaneous confidence limit (95%) estimated from a homogeneous
Poisson process. Notice that no hurricanes reached the U.S. coast during 2000 and 2001, so the
algorithm hints at a possible change-point following the 1999 season. The evidence however is
not strong as there are other two-year periods without hurricanes (1930-31 and the more recent
1981-82). Thus, somewhat surprisingly, the shifts in overall major hurricane activity noted in
the previous section are not reflected in overall landfall rates in the United States.

Recent studies have shown inter-annual to decadal changes to the spatial patterns of U.S.
hurricane activity related to large-scale climate factors (Elsner et al. 2000b). For instance, in
La Nina years during which the North Atlantic oscillation is weak, the probability of a hurricane
strike to the central Gulf coast increases significantly (Jagger et al. 2001; Saunders et al. 2000).
It is therefore instructive to consider regional coastal hurricane activity. We divide the coast into
three zones; Gulf coast, Florida, and East coast and consider the possibility of rate changes over
each. Florida, with its 2171 km of coastline, leads the United States in frequency of hurricanes.
The Gulf coast is defined as the region from Texas to Alabama, while the East coast is defined

as the region from Georgia to Maine. Clearly, other divisions are possible.

b. Regional activity

Figure 9 shows the average posterior probability of each year being a change-point for the records
of Gulf coast, Florida, and East coast hurricanes. The hurricane rates along the Gulf and East
coasts appear to be rather stable over the 102-year period. No probabilities extend above the
simultaneous confidence limit estimated from a constant-rate Poisson process. Thus, as with
overall coastal hurricane activity, we find no significant shifts in the rates of Gulf or East coast
hurricanes. The situation is different in Florida where there is evidence of rate shifts during the
early 1950’s and again during the late 1960’s.

The Gibbs sampler is run 30 times to get an ensemble average of the mean Poisson rate

before and after 1952. The ensemble average of the mean rate parameter is 0.83 before 1952 and
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0.48 thereafter indicating a decrease in Florida hurricanes beginning in the early 1950’s. The
difference is significantly offset from zero with an ensemble p-value of 0.015. Surprisingly, the
shift at 1969 is also downward with a mean rate of 0.79 before and 0.40 thereafter. Here the
difference is significantly offset from zero with an ensemble p-value of 0.008. Posterior density
estimates of the rate parameters and their differences are shown for both candidate change points
in Fig. 10. The densities indicate two consecutive downward shifts in Florida hurricane activity
during the later half of the 20th century.

5. ENSO and the NAO

Importantly, the Gibbs sampler can also be used to examine the effect of covariates on hurricane
activity. In particular the influence of the El Nifio/Southern Oscillation (ENSO) and the North
Atlantic oscillation (NAO) on annual coastal hurricane numbers is of interest and can be exam-
ined with a slight modification to the Gibbs sampler algorithm. Here it is assumed that each
year is independent which is reasonable for annual hurricane counts. The statistical relationship
between ENSO and U.S. hurricanes is well-known (Bove et al. 1998; Elsner et al. 1999; Elsner
and Kara 1999; Jagger et al. 2001), but the relationship between NAO and U.S. hurricanes is
less well recognized (Elsner et al. 2000b; Elsner et al. 2001).

A reliable time record of the Pacific ENSO is obtained by using basin-scale equatorial fluc-
tuations of sea surface temperatures (SST). Average SST anomalies over the region bounded
by 6°N to 6°S latitude and 90°W to 180°W longitude are called the “cold tongue index” (CTI)
(Deser and Wallace 1990). Values of CTI are obtained from the Joint Institute for the Study
of the Atmosphere and the Oceans as monthly anomalies (base period: 1950-79) in hundredths
of a degree Celsius. Monthly values of the CTI are strongly correlated with values from other
ENSO SST indices. Since the Atlantic hurricane season runs principally from August through
October, a 3-month averaged (Aug-Oct) CTI from the data set is used. Values of an index for
the NAO are calculated from sea level pressures at Gibraltar and at a station over southwest
Iceland (Jones et al. 1997), and are obtained from the Climatic Research Unit. The values are
first averaged over the pre- and early-hurricane season months of May and June. This is a
compromise between signal strength and timing relative to the hurricane season. The signal-to-
noise ratio in the NAQO is largest during the boreal winter and spring, whereas the U.S. hurricane
season begins in June (see Elsner et al. 2001).

For both the ENSO and NAO we divide the range of values occurring over the 102-year
period into equal interval terciles describing below, normal, and above normal years. The upper
and lower tercile values of the Aug—Oct average CTI are 0.90 and —0.23°C, respectively. The
upper and lower tercile values of the May-Jun average NAO are 1.05 and —0.85 s.d., respectively.
Years of above (below) normal CTI correspond to El Nino (La Nifia) events. We remove the

group of normal years and compare the hurricane rates for years of above and below normal
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climate conditions. In this way there are 14 (39) above (below) normal ENSO years and 11 (34)
above (below) normal NAO years during the 20th century.

Figure 11 shows the posterior densities of the rate differences (above normal years minus
below normal years) using the Gibbs sampler. As anticipated we see that during El Nifo years
(above normal) the annual rate is significantly less than the rate during La Nina years (below
normal). A 30-member ensemble gives an average rate of 0.72 hurricanes/yr during El Nifio
years compared with 2.18 hurricanes/yr during La Nina years. This difference results in a p-
value that is less than 0.001. The influence of El Nifio appears all along the coast, but is strongest
over Florida which has a mean rate of 0.37 hurricanes/yr during El Nino compared with 0.93
hurricanes/yr during La Nina. This difference corresponds to a p-value of 0.011. Figure 11
also shows the effect of NAO on U.S. hurricanes. During its strong phase (above normal), the
ensemble average rate is 1.02 hurricanes/yr compared with 2.21 hurricanes/yr during its weak
(or negative) phase (below normal). This provides a p-value of 0.003. Unlike the influence of
ENSO which is felt all along the coast, the influence of the NAO is only significant along the
Gulf coast. Here the annual rate is 0.38 hurricanes/yr during the NAO strong phase and 0.86
during the NAO weak phase. This is consistent with the hypothesis that the NAO is linked to

hurricane steering mechanisms (Elsner et al. 2000b, Elsner et al. 2001).

6. Summary and Comments

This paper demonstrates an application of a general statistical framework for determining sud-
den changes at unknown times in climatological records involving counts. The presentation is
expository. The approach is rooted in Bayesian theory. The iterative Monte Carlo method,
known as the Gibbs sampler, produces a Markov chain, the output of which corresponds to a
(correlated) sample from the joint posterior distribution. Our purpose is to illustrate the utility
of the approach by applying it to the problem of detecting and quantifying shifts in the rates of
coastal hurricane activity.

The procedure is first applied to annual counts of major North Atlantic hurricanes. Results
are consistent with those generated from a classical change-point model (Elsner et al. 2000a)
including an ominous rate increase starting in 1995. When the algorithm is applied to annual
counts of overall U.S. hurricane activity there is little evidence for significant rate changes during
the 20th century. Grouping counts by region including the Gulf coast, Florida, and the East
coast and applying the algorithm to each region separately indicates significant decreases in
the number of Florida hurricanes during the early 1950’s and again during the late 1960’s.
The statistically significant and consecutive decreases in Florida hurricane activity occur over a
period of substantial growth in the state’s population.

The algorithm is also used to study the influence of ENSO and the NAO on coastal hurricane

activity. Climate data representing these two modes of variability are divided into terciles

14



representing above normal, normal, and below normal conditions. As expected from previous
studies, we find a statistically significant linkage to the ENSO. During El Nino years coastal
hurricane rates are reduced from Texas to Maine. The most pronounced effect occurs over
Florida. The NAO also plays a role. During years in which the NAO index is below normal
more than twice as many hurricanes reach the coast on average. However, unlike the ENSO’s
influence which is felt all along the coast, NAQO’s influence is significant only for the Gulf coast
from Texas to Alabama.

Given its utility and ease of application, MCMC change-point algorithms should become a

standard research tool in climate-related sciences.
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Figure 1: The first 500 iterations of the Gibbs sampler change-point algorithm applied to the
annual counts of North Atlantic hurricanes over the period 1900-2001. Initial values are a1 =
ag = 0.3 and v1 =2 = 0.1, and €; = €3 = 1. The first 50 iterations (left of the dashed vertical

line) are discarded as burn-in.
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Figure 2: Average posterior probabilities of each year being the first year of a new epoch. Large
probabilities on year ¢ indicate a change likely occurred with ¢ as the first year of the new epoch.
The dashed line represents the 95% simultaneous confidence level based on 1000 simulations of
a constant rate (homogeneous) Poisson process. In general years with points lying above this

line are considered candidate change-point years.
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Figure 6: Estimates of the posterior densities from the Gibbs sampler applied to the time series
of major hurricane counts. Density of (a) 51, (b) B2, (¢c) Ay (1943-1964) and A, (1965-2001),
and (d) Ay — A\p. The ensemble average Poisson rate before 1965 ()\,) = 3.41 and the ensemble

average rate after (and including) 1965 (\,) = 1.97. This provides an ensemble average p-value

on the rate decrease of less than 0.001.
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Figure 9: Same as Fig. 9 except for annual counts of hurricanes affecting the (a) Gulf coast, (b)
Florida, and (c) East coast.

27



4 (a) 1969 A, \ 4 (c) 1952 A
b
)‘b
2z 3] 3
g
52 2
L
8
a1 1
0 ‘ ; 0 7 ‘
0.0 0.5 1.0 1.5 0.0 05 1.0 1.5
Poisson Intensity Poisson Intensity
25 | (b) 1969 25 | (d) 1952
2.0 1 2.0 1
2
§ 1.5 1 1.5 ]
k<]
g 1.0 1.0
g
0.5 1 0.5 1
p-value = 0.008 p-value = 0.015
0.0 ‘ 0.0 ‘ \
-1.0 -0.5 0.0 0.5 -1.0 -0.5 0.0 0.5
)\a_)\b )‘a')‘b

Figure 10: Estimates of the posterior densities from the Gibbs sampler applied to the time
series of Florida hurricane counts. Density of (a) A, (1900-1968) and A\, (1969-2001), and (b)
Aa — Ap. The ensemble average Poisson rate before 1969 <5\b> = 0.79 and the ensemble average
rate after (and including) 1969 (\,) = 0.40. This provides an ensemble average p-value on the
rate difference that equal to 0.008. Density of (c) A, (1900-1951) and A, (1952-2001), and (d)
Aa — M. The ensemble average Poisson rate before 1952 (\;) = 0.83 and the ensemble average

rate after (and including) 1952 (\,) = 0.48. This provides an ensemble average p-value on the
rate difference equal to 0.015.
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Figure 11: Posterior densities of the hurricane rate differences (below normal years minus above
normal years) for (a) All U.S. hurricanes and ENSO, (b) Gulf coast hurricanes and ENSO, (c)
Florida hurricanes and ENSO, (d) East coast hurricanes and ENSO, (e) All U.S. hurricanes and
NAO, (f) Gulf coast hurricanes and NAQO, (g) Florida hurricanes and NAO, and (h) East coast
hurricanes and NAO.
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