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Abstract

Annual hurricane counts are analyzed using a Markov chain Monte Carlo change-point

model. The approach simulates marginal posterior distributions of the Poisson rate pa-

rameter using the Gibbs sampler algorithm. The paper is expository. Procedures are first

employed on a recently debated time series of major North Atlantic hurricanes. Results con-

firm our earlier findings that show significant shifts in major North Atlantic hurricane rates

during the middle 1940’s, the middle 1960’s, and 1995. The methodology is then applied to

annual counts of U.S. hurricanes. Results are consistent with a homogeneous Poisson pro-

cess showing no abrupt changes to overall coastal hurricane rates during the 20th century.

In contrast, the Florida hurricane record indicates consecutive downward shifts first during

the early 1950’s and again during the late 1960’s. No significant rate shifts are noted for

Gulf or East coast hurricane activity. With a slight modification, the Gibbs sampler is then

used to examine climate influences on coastal hurricane activity. Results show a significantly

lower U.S. hurricane rate during El Niño events and during the negative phase of the North

Atlantic oscillation. The ENSO effects are most pronounced over Florida while the NAO

effects are most pronounced along the Gulf coast.
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1. Introduction

Applied climate research relies heavily on singular value decomposition (SVD) methods for data

analysis and prediction. Techniques include empirical orthogonal functions (EOFs), singular

spectrum analysis (SSA), canonical correlation analysis (CCA), factor analysis (FA), among

others. These tools identify the largest portion of the temporal and/or spatial variability (dom-

inant modes) in the observations or model output. Typically the objective is to reduce the

dimension of a data set by considering a projection of the original values onto the dominant

modes of variability. The reduced data set is then further analyzed using one of a variety of

tools, including regression analysis. SVD techniques are often employed to describe trends and

oscillatory behavior in climate. In these cases the underlying physical model of the climate

assumes stationarity, and the oscillations are considered regularly varying against a background

of correlated noise.

Contemporary understanding of the nature of global climate processes, including the El Niño-

Southern Oscillation (ENSO) and the North Atlantic Oscillation (NAO) among others, suggest

that climate may operate in two or more quasi-stationary states (Lockwood 2001; Tsonis, et

al. 1998; Tsonis and Elsner 1990; Berger and Labeyrie 1987). Transitions between different

climate states may occur rather abruptly rather than slowly varying as a consequence of the

dissipative, non-linear, and non-equilibrium properties of the climate system (Vannitsem and

Nicolis 1991). Under this scenario successive climate shifts may result in an observable that

appears to have a low frequency oscillation. A more precise description might be randomly

occurring change-points. In this case SVD-type data analytic tools are less appropriate as they

assume stationarity and regularly varying changes. In short, climate research methods need to

be consistent with the underlying physical model of the climate process.

Change-point models are used to quantitatively identify and describe shifts to climate vari-

ables. This is important in the context of studying climate variability and change (Solow 1988),

but it also has relevance in pinpointing potential inhomogeneities in climate records arising from

improved observational technologies and changes in the station location. This has utility for the

weather derivative market which relies on homogeneous records for estimating call and put op-

tions. Here we show that a statistical change-point model provides an alternative tool for data

analytical climate studies; a tool which is consistent with a physical climate model supporting

abrupt rather than slowly varying transitions. Change-point models are used to study climate

variations, but their lack of widespread appeal might be related to the often ad hoc decisions

necessary for their application. This limitation is less severe with a Markov chain Monte Carlo

(MCMC) approach. For instance, Elsner et al. (2000a) use a log-linear regression approach

to detect change points in the time series of annual counts of North Atlantic major hurricanes

during the period 1900–99. A similar approach is employed by Chu (2002) in examining hur-

ricanes that visit the central North Pacific. The assumption is the annual count of hurricanes

or major hurricanes, after a logarithm transformation, is approximately normally distributed.
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This distribution limitation disappears with a MCMC approach which can be applied directly

to non-normal distributions.

MCMC change-point analysis has received considerable attention from statisticians and en-

gineers. A thorough treatment of its utility for hydrological data is presented in Perreault et

al. (2000a, b). Beyond this the broader climatological community has yet to make use of these

approaches. Our purpose here is twofold: (1) To introduce to a wider meteorological audience

some of the essential ideas behind this data analytic approach; and (2) To shed additional light

on the problem of hurricane climate changes. It is important to stress that this work is not

an argument that change-point models are superior to SVD techniques. Both are important in

climatic data analysis and both play a role depending on the purpose at hand. The essential

message here is that change-point modeling can provide new insights into climate variability not

accessible with SVD methods, and with the MCMC approach, some of the subjective decisions

typically associated with change-point models can be dispensed with in favor of easier interpre-

tation. Our purpose is to illustrate the utility of the approach by applying a particular MCMC

algorithm to the problem of detecting and quantifying shifts in the rates of coastal hurricane

activity. In section 2 we outline the basic philosophy of the Bayesian approach to change-point

modeling. In section 3 we apply the algorithm to the annual counts of major North Atlantic

hurricanes. In section 4 the approach is applied to time sequences of coastal hurricane activ-

ity. In section 5 we show how the method can be used to examine covariate relationships. In

particular we examine the influence of the El Niño-Southern Oscillation (ENSO) and the North

Atlantic Oscillation (NAO) on coastal hurricane activity. Section 6 provides a summary and

final comments.

2. The MCMC Approach

a. Statistical inference

The MCMC approach is rooted in a Bayesian perspective. To help focus on this perspective it

is useful to consider first the general problem of statistical inference, which plays an important

role in climate science. Given a sample of data (from the climate or its simulation), what

conclusions can be made about the entire ‘population?’ Inference about the statistical model

can be formalized as follows: Let θ be a population parameter, then statistical inference amounts

to a supposition about θ on the basis of observing the data. We contend that values of θ which

give high probabilities to our specific data y are more likely than those which assign y low

probability (maximum likelihood principle). In essence the inferences are made by specifying a

probability distribution of y, f(y|θ), for a given value of θ.

If we treat θ as a constant we are in the domain of classical statistical theory. The difference

for Bayesian inference is that θ is treated as a random quantity, and our inference is based on

p(θ|y), a probability distribution of θ for a given data y, rather than on f(y|θ). This seems
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quite natural as we are interested in the probability distribution of the parameter given the

data, rather than the data given the parameter. The cost of this, more natural approach, is

that it is necessary to specify a prior probability distribution, π(θ), which represents our beliefs

about the distribution of θ before we have any information from the data. Thus, in the Bayesian

approach we combine the likelihood distribution of the data given the parameter with the prior

distribution to obtain:

p(θ|y) =
f(y|θ)π(θ)

∫

f(y|u)π(u)du
,

which is called Bayes’ theorem. Having observed y, Bayes’ theorem is used to determine the

distribution of θ conditional on y. This is called the posterior distribution of θ, and is the subject

of all Bayesian inference.

Any feature of the posterior distribution is legitimate for inference, including moments,

quantiles, p-values, etc. These quantities can be expressed in terms of the posterior expectations

of functions of θ. The posterior expectation of a function g(θ) is

E[g(θ)|y] =

∫

g(θ)π(θ)f(y|θ)dθ
∫

π(θ)f(y|θ)dθ
.

The integrals in the above expression are a source of practical difficulties in Bayesian infer-

ence, especially for more complex problems. Moreover, in most applications, analytic evaluation

of the expected value of the posterior density is impossible. Since numerical approximation

methods are difficult to employ in a general way, Monte Carlo integration methods have become

popular.

Monte Carlo integration evaluates E[g(y)] by drawing samples {ys, s = 1, . . . , N} from a

probability density p(.). An asymptotic approximation is given by

E[g(y)] ≈
1

N

n
∑

s=1

g(ys).

Thus the population mean of g(y) is estimated by a sample mean. An invariant posterior

distribution is guaranteed because the Monte Carlo sampling produces an irreducible Markov

chain. The key here is that N is controlled by the analyst; it is not the size of a fixed data

sample (Gilks et al. 1996).

b. Gibbs sampler algorithm

A common MCMC procedure is the so-called “Gibbs sampler.” Let ~θ = (θ1, θ2, . . . , θp)
′ be a

p-dimensional vector of parameters and let p(~θ|y) be its posterior distribution given the data y.

Then the Gibbs sampler is given as:

1. Choose an arbitrary starting point ~θ(0) = (θ
(0)
1 , θ

(0)
2 , . . . , θ

(0)
p )′, and set i = 0.

2. Generate ~θ(i+1) = (θ
(i+1)
1 , θ

(i+1)
2 , . . . , θ

(i+1)
p )′ as follows:
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• Generate θ
(i+1)
1 ∼ p(θ1|θ

(i)
2 , . . . , θ

(i)
p , y);

• Generate θ
(i+1)
2 ∼ p(θ2|θ

(i+1)
1 , θ

(i)
3 , . . . , θ

(i)
p , y);

. . . . . . . . .

• Generate θ
(i+1)
p ∼ p(θp|θ

(i+1)
1 , θ

(i+1)
2 , . . . , θ

(i+1)
p−1 , y).

3. Set i = i+ 1, and go to Step 2.

In this way each component of θ is visited in order and a cycle through the scheme results in

a sequence of p random numbers (Chen et al. 2000). Under general conditions the sequence of θs

forms a Markov chain, and the stationary distribution of the chain is the posterior distribution.

Typically, the chain is run for a large number of generations until the sample output is stable.

A large number of additional generations are run, the output of which is analyzed as if it were

a sample from the posterior distribution (Coles 1999).

3. North Atlantic Major Hurricane Activity

A hurricane is a tropical cyclone with maximum sustained (one-minute) 10 m winds of 33 ms−1

(65 kt) or greater. A major hurricane is one in which winds exceed 50 ms−1 (category 3 or higher

on the Saffir/Simpson hurricane destruction potential scale). The long-term average number of

major hurricane over the North Atlantic is close to two per year. Landsea et al. (1996) note

a downward trend in the occurrence of these powerful hurricanes. In contrast, Wilson (1999)

suggests a possible increase in activity beginning with 1995. The classical change-point model

employed by Elsner et al. (2000a) shows indeed that 1995 is the start of the most recent epoch

of greater major hurricane activity.

We begin our applications of the MCMC change-point model by revisiting this case. As

in Elsner et al. (2000a) we consider 1900 as the first year of the record. It is understood that

annual counts are likely biased prior to 1943 before the advent of aircraft reconnaissance, but

the intention here is to identify shifts in the time series of annual counts regardless of their

origin (natural or artificial). In fact one of the points made by Elsner et al. (2000a) is that, if

the model is worthwhile it should detect a shift in activity during the middle 1940s. Landsea

(1993) argue that an overestimation of hurricane intensity might have occurred even after 1943

during the period spanning the 1940s through the 1960s. Since there is still debate on this issue,

and since corrections have yet to be made in the best-track data set, we do not consider the

effect of this potential bias in the present study. In any event this decision does not influence

the work presented here.
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a. MCMC change-point algorithm

Given a time series of annual major hurricane counts, a change point occurs in the series if at

some point t the values come from a distribution with a common rate up to that time and come

from the same distribution but with a different rate afterward. The change-point separates the

series into two parts, and we define the change-point year as the first year of the new epoch.

Thus in a series of n annual counts, if a change is detected between year k and k + 1, we say

that k + 1 is the change-point year.

An algorithm for detecting change points using a Markov chain Monte Carlo Gibbs sampler

consists of two steps. Step one uses the entire record to determine candidate change points based

on the expected value of the transition kernel of the Markov chain as a function of year. Higher

mean values indicate candidate change-point years. A plot of the expected values as a function

of year along with a 95th percentile line identifies the candidate years. Step two determines

the posterior distributions of the relevant statistics before and after the candidate change point.

The fraction of the posterior density of λa − λb > 0 (or λa − λb < 0) provides evidence against

the hypothesis of no rate difference. From a frequentist perspective this amounts to a p-value

against the null hypothesis of no change. As with all output associated with the Markov chain,

the p-value is a random variable so additional runs are used to obtain ensemble averaged values.

For the present problem we are interested in two parameters; the hurricane rates before and

after some change point. Let λ̃ = (λa, λb) be a vector of two parameters, where λa is the mean

hurricane rate after the change and λb is the mean hurricane rate before the change and we

wish to simulate from the posterior f(λ̃|y) as described previously. More specifically, the data

are counts (Yi) of the annual number of major hurricanes observed over the North Atlantic each

year during the period 1900–2001 (n = 102). Thus the model describes a Poisson number of

hurricanes per year with a mean rate λb during years i = 1, . . . , k and a different mean rate λa

during years i = k + 1, . . . , n. Formally the Poisson/Gamma model is given as:

Yi ∼ Poisson(λb); i = 1, . . . , k;

Yi ∼ Poisson(λa); i = k + 1, . . . , n;

where λb ∼ Gamma(α1, β1), λa ∼ Gamma(α2, β2), k is discrete uniform over {1, . . . , 101}, each

independent, and β1 ∼ Gamma(γ1, ε1) and β2 ∼ Gamma(γ2, ε2) (Coles 1999). This specification

leads to the following conditions:

λb|Y, λa, β1, β2, k ∼ Gamma

(

α1 +
k
∑

i=1

Yi, k + β1

)

λa|Y, λb, β1, β2, k ∼ Gamma

(

α2 +
n
∑

i=k+1

Yi, n− k + β2

)

β1|Y, λb, λa, β2, k ∼ Gamma(α1 + γ1, λb + ε1)
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β2|Y, λb, λa, β1, k ∼ Gamma(α2 + γ2, λa + ε2)

and

p(k|Y, λb, λa, β1, β2) =
L(Y ; k, λb, λa)

∑n
j=1 L(Y ; j, λb, λa)

,

where the likelihood function is

L(Y ; k, λb, λa) = exp{k(λa − λb)}(λb/λa)
∑

k

i=1
Yi .

Starting with some initial (prior) values for α1, α2, γ1, γ2, ε1, and ε2 the Gibbs sampler generates

sequences of λa and λb which form Markov chains. The stationary distributions of the chains

are the posterior distributions for each of the parameters.

b. Practical considerations

There are several practical issues that need to be addressed. First is the definition of years

relative to the suspected change point. In the above model specification year k is the last year

of the old epoch with k + 1 the first year of the new epoch. To be consistent our earlier results

(Elsner et al. 2000a) we plot the change-point as the first year of the new epoch and refer to

this year as the change-point year.

Second is the choice of starting (or initial) values. In theory if the chain is irreducible meaning

that it can reach any non-empty set with positive probability, then the choice of initial values

will not influence the final stationary (invariant) posterior distribution. Since the Poisson rate

parameter is Gamma(α, β) with mean α/β and variance α/β2, we choose α1 = α2 = 0.3 and

γ1 = γ2 = 0.1, and ε1 = ε2 = 1 as our starting values. Thus the mean values for β1 and β2 are

0.1/1 = 0.1 and the mean values for λa and λb are 0.3/0.1 = 3, which is close to the average

annual number of major hurricanes per year. In practice it is useful to perform a number of

simulations with different starting values to check if the posterior distribution is sensitive to the

choice of initial values. Results from these simulations are given in the next section.

Third is the issue of chain length and burn-in. If the chain is irreducible, aperiodic, and

positive recurrent then it will converge to a stationary posterior distribution (Roberts 1996). In

practice the chain is run for a large number of iterations until the sample output is stable with the

first hundred or so iterations discarded as “burn-in” and the remain values considered samples

from the stationary distribution. The length of burn-in depends on the initial values and the

rate of convergence, which is related to how fast the chain mixes. Developing rigorous criteria

for deciding chain length and burn-in requires a detailed study of the convergence properties of

the chain (Jones and Hobert 2001) that is beyond the scope of the present work. Trial-and-error

using visual inspection of the chain’s output is a commonly used method for determining length

of burn-in, and it is the one adopted here. Using the above prescribed initial values, the Gibbs

sampler change-point algorithm is run on the annual counts of major North Atlantic hurricanes

(1900–2001) with values of β1 and β2 plotted for each iteration (Figure 1). Convergence is quick.
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The distribution of values for both β1 and β2 do not appear to change as the chain is run for

a greater number of iterations. This is typical. However, it is still good practice to remove the

early iterates to allow the chain to ‘forget’ its starting position. Throughout the present work

we choose a burn-in of 50 iterations and estimate the posterior distribution from the next 1000

iterations.

Fourth is the issue of statistical significance. Even if the time series of annual counts comes

from a homogeneous Poisson process implying no rate shifts, a sequence of random values gen-

erated from such a process might result in a series that has one or more change points. Thus

we need to compare the results of the analysis on our observed time series against the null

hypothesis of no change point. To do this, we generate a set of 1000 surrogate time series from

a homogeneous Poisson process with the rate equal to the average number hurricanes observed

over the 102-year period. We then run the Gibbs sampler as before (1050 iterations discarding

the first 50 as burn-in) on each of the surrogate series. The confidence level associated with each

of the individual years being a change-point must be adjusted upward to produce a simultaneous

confidence level across the entire period. It makes little sense if each year is the start of a new

epoch as then each epoch would last only a single year. Realistically we assume that an epoch

lasts a decade so that the confidence level of m = n/10 individual epochs are adjusted upward to

the 99.5th percentile. This procedure provides a simultaneous 95% confidence level as an appli-

cation of the Bonferroni inequality in probability theory. The simultaneous confidence interval

is a baseline for identifying candidate change-point years. Note we could sample the assumed

homogeneous Poisson rate and then use the rate to generate random Poisson samples. However,

the annual probability of a change point depends more on record length then on variation in the

rates. In fact, for this study we use a single Bonferroni confidence level irrespective of the rates.

The confidence level is re-estimated when we consider a shorter record.

c. Results

Figure 2 shows the results from the MCMC change-point algorithm applied to the annual counts

of major North Atlantic hurricanes during the period 1900–2001. The expected value of the

transition kernel of the Markov chain p is plotted as a function of year. The expected value

represents the average posterior probability of the year being the first year of a new epoch.

Large probabilities indicate a change occurred with year t. The dashed line shows the 95%

simultaneous confidence line against the null hypothesis of no change point generated from 103

simulations of a homogeneous Poisson process with rate parameter equal to the mean number of

major hurricanes over the period 1900–2001. The line is smoothed using a 5-year normal kernel

smoother. Years with probabilities above the 95% simultaneous confidence line include 1906,

1943, and 1995. Note that several years around 1943 are also candidate change-point years. This

indicates that although the algorithm chooses 1943 as the most likely year of the new epoch there

is statistical uncertainty associated with whether the new epoch begins with 1943 or 1944. This
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is not the case with 1995 or 1906 where no other years appear to be in contention. Also note that

years near the beginning and end of the record require substantially larger posterior probabilities

to surpass the nominal significance level. The U-shaped confidence level indicates that there is

a greater uncertainty (larger variance on the posterior probabilities) about candidate change-

points close to the record end points. Caution is warranted when interpreting large probabilities

on these years as the chance of a false detection is greater. Ensemble runs as discussed below

can help in this regard.

As previously mentioned it is important to examine the influence the choice of initial values

has on the average posterior probability and thus the selection of candidate years. This is done

here by running the Gibbs sampler algorithm 30 times for each value of the α priors equal to

0.1, 0.3, 0.5, and 0.7. The algorithm is run using 1050 iterations with the first 50 discarded

as burn-in. Figure 3 shows the distribution of probabilities for the candidate years using box

and whisker plots. Overall the results demonstrate that the choice of prior values is not a

critical factor in identifying candidate years as the chain quickly finds a stationary distribution

regardless of where it is started. Variability in the average posterior probabilities is largest for

candidate years 1906 and 1995. As noted above, this results from the fact that these years

are near the beginning and end of the time series. Posterior probability distributions based on

relatively few data points will have a greater spread.

The MCMC change-point algorithm continues by checking the significance of the candidate

change-point years. We look first at 1943 since the jump in annual major hurricane counts at

this time is most likely due to the use of aircraft reconnaissance investigations (Neumann et

al. 1999; Jarvinen et al. 1984). Posterior density estimates of the relevant statistics (β1, β2,

λa, λb, and λa − λb) from the Gibbs sampler are shown in Fig. 4. We focus on the probability

densities of the annual hurricane rate parameters before and after (including) 1943. Densities

are smoothed versions of the histograms and are based here on a normal kernel with bandwidth

equal to 4 times the standard deviation of the values (Venables and Ripley 1999).

The Gibbs sampler is run 30 times to get an ensemble average of the mean Poisson rate before

〈λ̄b〉 and after 〈λ̄a〉 the change point. The ensemble average of the mean rate parameter is 1.51

before 1943 and 2.51 thereafter. The posterior densities of the rate parameters indicate little

overlap implying a significant rate increase beginning with the 1943 season. This is examined

directly by considering the posterior density of the rate differences. Only a negligible fraction

of the posterior distribution of λa − λb is less than zero. The number of differences less than

zero provides a one-sided p-value as evidence against the hypothesis of equal rates before and

after 1943. The ensemble average p-value is less than 0.001. There is convincing evidence of a

rate difference. As stated above the increase in observed activity starting in the middle 1940s is

likely due in part to the start of aircraft reconnaissance. Therefore we continue the investigation

of major hurricane activity by examining the record only from 1943 onward.

Figure 5 shows the results from the MCMC change-point algorithm applied to the annual
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counts of major North Atlantic hurricanes during the period 1943–2001. Both 1965 and 1995 are

years with high probabilities. Additional high probability years clustering around 1965 include

1962, 1966, and 1967. Estimates of the posterior densities relative to 1965 are shown in Fig. 6.

As was done before the Gibbs sampler is run 30 times to get an ensemble average of the mean

Poisson rate before 〈λ̄b〉 and after 〈λ̄a〉 the change point. The ensemble averaged mean rate is

3.41 before 1965 and 1.97 thereafter. The posterior densities of the rates indicate little overlap

implying a significant decrease in activity beginning with the 1965 season. The ensemble p-value

against the null hypothesis of no rate change is less than 0.001. Similar results are obtained

for 1962, 1966, and 1967 indicating that the decline in abundance of major North Atlantic

hurricanes might have begun as early as 1962 or as late as 1967 with the most likely year being

1965.

Next we consider 1995. Estimates of the posterior densities are shown in Fig. 7. The

ensemble averaged mean hurricane rate before 1995 is 1.98 and 3.57 thereafter. The density for

the hurricane rate since 1995 (λa) is considerably flatter owing to the relatively few years of data

in the record following this year (7). The greater uncertainty about the annual rate at the end

of the hurricane record creates more overlap on the rate distributions and thus a larger p-value

on the rate difference. Even still, evidence is convincing that 1995 represents an upward shift in

hurricane activity.

Thus a picture emerges of significant quantifiable shifts in the frequency of major North

Atlantic hurricanes during the 20th century. The results for the middle 1940’s, 1965, and

1995 are consistent with results obtained using a non-probabilistic change-point model (Elsner

et al. 2000a). Beginning with the era of aircraft surveillance, we see that major hurricanes

occurred at an average annual rate of nearly 3.5 per year. The rate dropped significantly to

about 2 major hurricanes per year beginning sometime during the middle 1960’s with the new

epoch most likely starting with the 1965 season. This modern era of fewer major hurricanes

ends abruptly with the 1995 season. For the next seven seasons through 2001 the mean rate is

more than 3.5 hurricanes per year. The advantage of the probabilistic model is that it provides

natural uncertainty estimates on the rates before and after the change-point. It also provides

ensemble estimates of rate differences and p-values. We now turn our attention to a systematic

examination of change points in U.S. hurricane activity during the 20th century.

4. U.S. Hurricane Activity

In the previous section we demonstrate the change-point algorithm by applying it to major

hurricanes activity over the entire North Atlantic basin. Here we apply the methodology to

records of U.S. hurricane activity. We are unaware of change-point studies on these records.

Hurricane landfall occurs when all or part of the eye wall (the central ring of deep atmospheric

convection, heavy rainfall, and strong winds) passes directly over the coast or adjacent barrier
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island. A U.S. hurricane is a hurricane that makes at least one landfall. A reliable list of the

annual counts of U.S. hurricanes back to 1900 is available from the U.S. National Oceanic and

Atmospheric Administration (Neumann et al. 1999). These data represent a blend of historical

archives and modern direct measurements. An updated climatology of annual coastal hurricane

activity is given in Elsner and Kara (1999) and Elsner and Bossak (2001).

a. Overall activity

We consider first overall U.S. hurricane activity. The annual time series of U.S. hurricane counts

appears to be stationary over the period (Elsner and Kara 1999). The lag-one autocorrelation

is a negligible −0.02. Figure 8 shows the probability of each year being a change-point in the

series. In contrast to the posterior probabilities computed above from the series of annual major

hurricane counts, the probabilities computed based on counts of U.S. hurricanes are considerably

lower and all below the simultaneous confidence limit (95%) estimated from a homogeneous

Poisson process. Notice that no hurricanes reached the U.S. coast during 2000 and 2001, so the

algorithm hints at a possible change-point following the 1999 season. The evidence however is

not strong as there are other two-year periods without hurricanes (1930–31 and the more recent

1981–82). Thus, somewhat surprisingly, the shifts in overall major hurricane activity noted in

the previous section are not reflected in overall landfall rates in the United States.

Recent studies have shown inter-annual to decadal changes to the spatial patterns of U.S.

hurricane activity related to large-scale climate factors (Elsner et al. 2000b). For instance, in

La Niña years during which the North Atlantic oscillation is weak, the probability of a hurricane

strike to the central Gulf coast increases significantly (Jagger et al. 2001; Saunders et al. 2000).

It is therefore instructive to consider regional coastal hurricane activity. We divide the coast into

three zones; Gulf coast, Florida, and East coast and consider the possibility of rate changes over

each. Florida, with its 2171 km of coastline, leads the United States in frequency of hurricanes.

The Gulf coast is defined as the region from Texas to Alabama, while the East coast is defined

as the region from Georgia to Maine. Clearly, other divisions are possible.

b. Regional activity

Figure 9 shows the average posterior probability of each year being a change-point for the records

of Gulf coast, Florida, and East coast hurricanes. The hurricane rates along the Gulf and East

coasts appear to be rather stable over the 102-year period. No probabilities extend above the

simultaneous confidence limit estimated from a constant-rate Poisson process. Thus, as with

overall coastal hurricane activity, we find no significant shifts in the rates of Gulf or East coast

hurricanes. The situation is different in Florida where there is evidence of rate shifts during the

early 1950’s and again during the late 1960’s.

The Gibbs sampler is run 30 times to get an ensemble average of the mean Poisson rate

before and after 1952. The ensemble average of the mean rate parameter is 0.83 before 1952 and
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0.48 thereafter indicating a decrease in Florida hurricanes beginning in the early 1950’s. The

difference is significantly offset from zero with an ensemble p-value of 0.015. Surprisingly, the

shift at 1969 is also downward with a mean rate of 0.79 before and 0.40 thereafter. Here the

difference is significantly offset from zero with an ensemble p-value of 0.008. Posterior density

estimates of the rate parameters and their differences are shown for both candidate change points

in Fig. 10. The densities indicate two consecutive downward shifts in Florida hurricane activity

during the later half of the 20th century.

5. ENSO and the NAO

Importantly, the Gibbs sampler can also be used to examine the effect of covariates on hurricane

activity. In particular the influence of the El Niño/Southern Oscillation (ENSO) and the North

Atlantic oscillation (NAO) on annual coastal hurricane numbers is of interest and can be exam-

ined with a slight modification to the Gibbs sampler algorithm. Here it is assumed that each

year is independent which is reasonable for annual hurricane counts. The statistical relationship

between ENSO and U.S. hurricanes is well-known (Bove et al. 1998; Elsner et al. 1999; Elsner

and Kara 1999; Jagger et al. 2001), but the relationship between NAO and U.S. hurricanes is

less well recognized (Elsner et al. 2000b; Elsner et al. 2001).

A reliable time record of the Pacific ENSO is obtained by using basin-scale equatorial fluc-

tuations of sea surface temperatures (SST). Average SST anomalies over the region bounded

by 6◦N to 6◦S latitude and 90◦W to 180◦W longitude are called the “cold tongue index” (CTI)

(Deser and Wallace 1990). Values of CTI are obtained from the Joint Institute for the Study

of the Atmosphere and the Oceans as monthly anomalies (base period: 1950–79) in hundredths

of a degree Celsius. Monthly values of the CTI are strongly correlated with values from other

ENSO SST indices. Since the Atlantic hurricane season runs principally from August through

October, a 3-month averaged (Aug–Oct) CTI from the data set is used. Values of an index for

the NAO are calculated from sea level pressures at Gibraltar and at a station over southwest

Iceland (Jones et al. 1997), and are obtained from the Climatic Research Unit. The values are

first averaged over the pre- and early-hurricane season months of May and June. This is a

compromise between signal strength and timing relative to the hurricane season. The signal-to-

noise ratio in the NAO is largest during the boreal winter and spring, whereas the U.S. hurricane

season begins in June (see Elsner et al. 2001).

For both the ENSO and NAO we divide the range of values occurring over the 102-year

period into equal interval terciles describing below, normal, and above normal years. The upper

and lower tercile values of the Aug–Oct average CTI are 0.90 and −0.23◦C, respectively. The

upper and lower tercile values of the May-Jun average NAO are 1.05 and −0.85 s.d., respectively.

Years of above (below) normal CTI correspond to El Niño (La Niña) events. We remove the

group of normal years and compare the hurricane rates for years of above and below normal

13



climate conditions. In this way there are 14 (39) above (below) normal ENSO years and 11 (34)

above (below) normal NAO years during the 20th century.

Figure 11 shows the posterior densities of the rate differences (above normal years minus

below normal years) using the Gibbs sampler. As anticipated we see that during El Niño years

(above normal) the annual rate is significantly less than the rate during La Niña years (below

normal). A 30-member ensemble gives an average rate of 0.72 hurricanes/yr during El Niño

years compared with 2.18 hurricanes/yr during La Niña years. This difference results in a p-

value that is less than 0.001. The influence of El Niño appears all along the coast, but is strongest

over Florida which has a mean rate of 0.37 hurricanes/yr during El Niño compared with 0.93

hurricanes/yr during La Niña. This difference corresponds to a p-value of 0.011. Figure 11

also shows the effect of NAO on U.S. hurricanes. During its strong phase (above normal), the

ensemble average rate is 1.02 hurricanes/yr compared with 2.21 hurricanes/yr during its weak

(or negative) phase (below normal). This provides a p-value of 0.003. Unlike the influence of

ENSO which is felt all along the coast, the influence of the NAO is only significant along the

Gulf coast. Here the annual rate is 0.38 hurricanes/yr during the NAO strong phase and 0.86

during the NAO weak phase. This is consistent with the hypothesis that the NAO is linked to

hurricane steering mechanisms (Elsner et al. 2000b, Elsner et al. 2001).

6. Summary and Comments

This paper demonstrates an application of a general statistical framework for determining sud-

den changes at unknown times in climatological records involving counts. The presentation is

expository. The approach is rooted in Bayesian theory. The iterative Monte Carlo method,

known as the Gibbs sampler, produces a Markov chain, the output of which corresponds to a

(correlated) sample from the joint posterior distribution. Our purpose is to illustrate the utility

of the approach by applying it to the problem of detecting and quantifying shifts in the rates of

coastal hurricane activity.

The procedure is first applied to annual counts of major North Atlantic hurricanes. Results

are consistent with those generated from a classical change-point model (Elsner et al. 2000a)

including an ominous rate increase starting in 1995. When the algorithm is applied to annual

counts of overall U.S. hurricane activity there is little evidence for significant rate changes during

the 20th century. Grouping counts by region including the Gulf coast, Florida, and the East

coast and applying the algorithm to each region separately indicates significant decreases in

the number of Florida hurricanes during the early 1950’s and again during the late 1960’s.

The statistically significant and consecutive decreases in Florida hurricane activity occur over a

period of substantial growth in the state’s population.

The algorithm is also used to study the influence of ENSO and the NAO on coastal hurricane

activity. Climate data representing these two modes of variability are divided into terciles
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representing above normal, normal, and below normal conditions. As expected from previous

studies, we find a statistically significant linkage to the ENSO. During El Niño years coastal

hurricane rates are reduced from Texas to Maine. The most pronounced effect occurs over

Florida. The NAO also plays a role. During years in which the NAO index is below normal

more than twice as many hurricanes reach the coast on average. However, unlike the ENSO’s

influence which is felt all along the coast, NAO’s influence is significant only for the Gulf coast

from Texas to Alabama.

Given its utility and ease of application, MCMC change-point algorithms should become a

standard research tool in climate-related sciences.
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Figure 1: The first 500 iterations of the Gibbs sampler change-point algorithm applied to the

annual counts of North Atlantic hurricanes over the period 1900–2001. Initial values are α1 =

α2 = 0.3 and γ1 = γ2 = 0.1, and ε1 = ε2 = 1. The first 50 iterations (left of the dashed vertical

line) are discarded as burn-in.
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Figure 2: Average posterior probabilities of each year being the first year of a new epoch. Large

probabilities on year t indicate a change likely occurred with t as the first year of the new epoch.

The dashed line represents the 95% simultaneous confidence level based on 1000 simulations of

a constant rate (homogeneous) Poisson process. In general years with points lying above this

line are considered candidate change-point years.
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Figure 3: Distributions of the average posterior probabilities that (a) 1906, (b) 1943, and (c)

1995 are change-point years. Distributions based on 30 simulations are shown with a box and

whisker plot where the quartiles are represented by the top and bottom of the box and the

median is shown with a dot and horizontal line inside the box. Whiskers extend from the box to

the largest and smallest value in the distribution. The distributions are based on 30 independent

simulations.
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Figure 4: Estimates of the posterior densities from the Gibbs sampler applied to the time series

of major hurricane counts. Density of (a) β1, (b) β2, (c) λb (1900–1942) and λa (1943–2001),

and (d) λa − λb. The ensemble average Poisson rate before 1943 〈λ̄b〉 = 1.51 and the ensemble

average rate after (and including) 1943 〈λ̄a〉 = 2.51. This provides an ensemble average p-value

on the rate difference that is less than 0.001, where the p-value is based on the fraction of values

from the posterior density of λa − λb that are less than zero.
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Figure 5: Same as Fig. 2 expect the years prior to 1943 are excluded from the analysis.
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Figure 6: Estimates of the posterior densities from the Gibbs sampler applied to the time series

of major hurricane counts. Density of (a) β1, (b) β2, (c) λb (1943–1964) and λa (1965–2001),

and (d) λa − λb. The ensemble average Poisson rate before 1965 〈λ̄b〉 = 3.41 and the ensemble

average rate after (and including) 1965 〈λ̄a〉 = 1.97. This provides an ensemble average p-value

on the rate decrease of less than 0.001.
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Figure 7: Estimates of the posterior densities from the Gibbs sampler applied to the time series

of major hurricane counts. Density of (a) β1, (b) β2, (c) λb (1900–1994) and λa (1995–2001),

and (d) λa − λb. The ensemble average Poisson rate before 1995 〈λ̄b〉 = 2.37 and the ensemble

average rate after (and including) 1995 〈λ̄a〉 = 3.57. This provides an ensemble average p-value

on the rate increase equal to 0.041.
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Figure 8: Same as Fig. 2 except for U.S. hurricanes. Note in this case there are no years with

posterior probabilities that exceed the 95$ confidence level from the constant rate Poisson model.
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Figure 9: Same as Fig. 9 except for annual counts of hurricanes affecting the (a) Gulf coast, (b)

Florida, and (c) East coast.
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Figure 10: Estimates of the posterior densities from the Gibbs sampler applied to the time

series of Florida hurricane counts. Density of (a) λb (1900–1968) and λa (1969–2001), and (b)

λa − λb. The ensemble average Poisson rate before 1969 〈λ̄b〉 = 0.79 and the ensemble average

rate after (and including) 1969 〈λ̄a〉 = 0.40. This provides an ensemble average p-value on the

rate difference that equal to 0.008. Density of (c) λb (1900–1951) and λa (1952–2001), and (d)

λa − λb. The ensemble average Poisson rate before 1952 〈λ̄b〉 = 0.83 and the ensemble average

rate after (and including) 1952 〈λ̄a〉 = 0.48. This provides an ensemble average p-value on the

rate difference equal to 0.015.
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Figure 11: Posterior densities of the hurricane rate differences (below normal years minus above

normal years) for (a) All U.S. hurricanes and ENSO, (b) Gulf coast hurricanes and ENSO, (c)

Florida hurricanes and ENSO, (d) East coast hurricanes and ENSO, (e) All U.S. hurricanes and

NAO, (f) Gulf coast hurricanes and NAO, (g) Florida hurricanes and NAO, and (h) East coast

hurricanes and NAO.
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