

1
2 **The stratospheric impact of the Chisholm PyroCumulonimbus eruption: Part I,**
3 **nadir satellite perspective**

4
5 M. Fromm¹, O. Torres², D. Diner³, D. Lindsey⁴, B. Vant Hull⁵, R. Servranckx⁶, E.P.
6 Shettle¹, Z. Li⁷

7
8 1 Naval Research Laboratory, Washington D.C., USA

9 2 NASA-GSFC & UMBC-JCET, Greenbelt, MD, USA

10 3 Jet Propulsion Laboratory, Pasadena, CA, USA

11 4 NOAA/NESDIS/RAMMB, Fort Collins, CO, USA

12 5 NOAA/CREST, City College of New York, New York, USA

13 6 Canadian Meteorological Center, Dorval, Quebec, CA

14 7, Earth System Science Interdisciplinary Center, University of Maryland, College Park,
15 MD, USA

16
17 **Abstract**

18
19 The pyrocumulonimbus storm near Chisholm, Alberta on 28 May 2001 has been studied
20 in depth. However the impact of this eruption on the lower stratosphere has not been
21 quantified. Here and in a companion paper we explore this question. This paper focuses
22 on the “young” Chisholm smoke plume, from the age of ~3 hr to 1 week, as observed by
23 quasi-nadir-viewing satellite instruments. GOES visible and infrared image loops reveal
24 the pyroconvective lifecycle and initial transport of the smoke cloud. MISR
25 stereographic heights are the first of their kind for a stratospheric cloud, showing smoke
26 up to 5 km above the tropopause on 29 May. MODIS IR and visible images are analyzed
27 to give constraints on plume height, optical thickness, and particle size. Infrared
28 brightness temperature analyses reveal unique aspects of the “day after” Chisholm plume.
29 Particle size is roughly an order of magnitude smaller than normal cirrus crystals. The
30 daytime 29 May plume is optically thick at tropopause temperatures yet smoky brown. A
31 transition from deep anvil blow off to “dry” smoke is still occurring after ~1.5 days.

1 TOMS aerosol index is used as a proxy for areas of particularly high smoke-plume
2 altitude. The Chisholm smoke in the upper troposphere and lower stratosphere is traced
3 with AI for one week as the plume blows across North America to western Europe. First
4 estimates are made of stratospheric smoke-mass in relation to emissions during
5 pyroconvection. The 29 May stratospheric Chisholm pyroCb plume contains a mass of
6 $\sim 1.94 \times 10^4$ t, which represents between $\sim 22\%$ of particle emissions from this fire. This
7 also represents $\sim 5\%$ of background northern hemispheric stratospheric sulfate aerosol
8 mass.

9

10

11 **1 Introduction**

12

13 Smoke and other biomass burning emissions in the lower stratosphere (LS) have been
14 observed and documented on at least nine occasions, in 1950 [Penndorf, 1953], 1992
15 [Livesey *et al.*, 2004], 1994 [Waibel *et al.*, 1999], two events in 1998 [Fromm *et al.*, 2000
16 and 2005; Siebert *et al.*, 2000], 2001 [Fromm and Servranckx, 2003, hereafter shown as
17 FS03], 2002 [Jost *et al.*, 2004], 2003 [Fromm *et al.*, 2006], and 2004 [Damoah *et al.*,
18 2006]. In all except the earliest case the cause was either identified as or speculated to be
19 large forest or bush fires involving deep pyroconvection. (The source in the Penndorf
20 case was a large Canadian forest fire but convection was not identified or suspected.)
21 The most extreme manifestation of pyrocumulus, now being called pyrocumulonimbus
22 (pyroCb for short), is a fire-aided or -caused severe convective storm that reaches the
23 upper troposphere, lower stratosphere (UTLS), involves lightning, precipitation and/or
24 hail, extreme winds, and in some cases even tornadoes [Fromm *et al.*, 2006]. The role
25 and importance of intense pyroCb in transporting smoke and other biomass burning
26 emissions into the UTLS are still in the early stages of our understanding. Presently, the
27 various aspects of this phenomenon are still incompletely characterized, but new
28 observations, surveys, and simulations of the pyroCb are on the increase.

29

30 It has been established that pyroCb can produce a two to fivefold increase in zonal
31 average lowermost stratospheric aerosol optical depth [Fromm *et al.* 2000, 2005, 2006].

1 Certain aspects of the pyroCb combustion/convection dynamic that enable the production
2 and transport of such aerosol abundances into the LS are now being explored. For
3 instance, the *Fromm et al.* [2006] case study of a pyroCb in Canberra Australia--aided by
4 radar, photographs, and photogrammetric ground-damage assessment--found that the
5 firestorm manifested unique cloud microphysics, spawned a tornado, and had plume
6 characteristics consistent with a volcanic eruption [*Tupper et al.*, 2005]. Another case for
7 which the details are being intensely studied is the Chisholm fire (Alberta Canada, 55°N,
8 114°W) and pyroCb of 28 May 2001 [FS03]. Several additional investigations of the
9 Chisholm pyroCb have since been initiated because of the wealth of untapped data [e.g.
10 *Rosenfeld et al.*, 2007, hereafter cited as R07] and a motivation to simulate the Chisholm
11 pyroconvection [*Trentmann et al.*, 2006 and *Luderer et al.*, 2006] and smoke plume
12 heating/lofting [*Stenchikov et al.*, 2006].

13

14 One area of uncertainty regarding extreme pyroconvection is the immediate post-
15 convection plume. A quantitative understanding of the pyroCb injection is necessary for
16 characterizing the eruption energetics, fuel consumption, and reconciling this “initial
17 condition” of a UTLS plume with downstream impact. Works such as FS03 and *Fromm*
18 *et al.* [2005] documented peculiar and suggestive qualities of the “day after pyroCb”
19 plume observed from satellite. In summary, what was seen is a mesoscale cloud that is
20 gray or smoky [in](#) color, opaque in the thermal infrared (LWIR) at brightness temperature
21 (BT) representative of the tropopause region, and having an ultraviolet backscattering
22 aerosol index (AI) of extremely large positive values [*Fromm et al.*, 2005]. In this paper
23 we explore in detail the Chisholm pyroCb “day after” plume and the evolution of this
24 plume in the week after the injection into the LS. The present work is motivated by
25 revelations since FS03 that provide objective constraints on qualities such as the young
26 plume’s altitude. Moreover, the Total Ozone Mapping Spectrometer (TOMS) retrieval
27 algorithm graduated to version 8 [*Bhartia*, 2007] since FS03, resulting in enhanced
28 sensitivity of the AI to UTLS aerosols. This is a companion paper to *Fromm et al.*,
29 [submitted 2007], which deals with profile views of the Chisholm plume as it evolved in
30 the spring/summer of 2001.

31

1 In this work we integrate several available nadir and quasi-nadir satellite imager views of
2 the Chisholm UTLS smoke plume in the first week after the pyroCb. The primary aim is
3 to establish quantitative constraints on the young plume’s UTLS altitude, geometric
4 thickness, smoke-particle abundance and size. A second aim is to characterize the
5 physical evolution of the plume in the first week after the injection. The satellite
6 instruments consist of the Moderate Resolution Imaging Spectrometer (MODIS) [*King et*
7 *al.* 1992; *Kaufmann et al.* 1997] and Multi-angle Imaging SpectroRadiometer (MISR)
8 [*Diner et al.* 1998] aboard the Terra platform, Earth Probe TOMS [*Torres et al.* 2002],
9 and the Geostationary Operational Environmental Satellite (GOES).

10

11 In section 2 we describe the data sets used. Section 3 contains an analysis of the “day
12 after” Chisholm plume as observed by GOES, TOMS, MODIS, and MISR. In Section 4
13 we compare MODIS and TOMS views of the Chisholm plume on 30 May 2001 with the
14 29 May “day after” plume. Section 5 contains the analysis of the movement of the plume
15 in its first week revealed by TOMS AI maps. Discussion and summary are contained in
16 Section 6.

17

18 **2.0 Data Sets**

19

20 **2.1 MISR**

21

22 MISR provides continuous multi-angle imagery of the sunlit Earth. The instrument
23 contains nine charge-coupled-device-based pushbroom cameras to observe the Earth at
24 nine discrete view angles: One view points toward nadir, and the other eight are
25 symmetrical views at 26°, 46°, 60°, and 70° forward and backward of nadir. Images at
26 each angle are obtained in four spectral bands centered at 446, 558, 672, and 866 nm. The
27 swath width of the MISR imaging data is 400 km. It takes 7 minutes for any particular
28 scene to be observed at all nine viewing angles. In its global observing mode, data from
29 the red band of all of MISR’s off-nadir cameras, and in the four bands of the nadir
30 camera, are acquired at 275-m spatial resolution; all other channels are averaged on-
31 board to 1.1-km resolution to conserve data rate. See *Diner et al.* [1998] for more details.

1
2 Ground data processing maps MISR radiances to a Space Oblique Mercator projection,
3 which geolocates and co-registers the data from all instrument channels to both the
4 WGS84 ellipsoid and to the surface terrain altitude. Geolocation uncertainty is estimated
5 to be ± 50 m, and co-registration errors are < 1 pixel (275 m). Ongoing assessments of
6 image geolocation and co-registration are performed to ensure product quality [Jovanovic
7 *et al.*, 2002, 2007]. The high resolution, ellipsoid-projected red-band radiances are
8 operationally used in an automated algorithm to derive cloud-top and aerosol plume-top
9 heights relative to the surface. Pattern matching is used to determine the geometric
10 parallax (horizontal displacement) for elevated atmospheric features, and stereo-
11 photogrammetric algorithms transform these parallaxes into cloud-top or plume-top
12 heights [Moroney *et al.* 2002; Muller *et al.* 2002; Zong *et al.* 2002]. In the standard MISR
13 Level 2 Stereo Product, which uses the nadir and 26° cameras in the height retrievals, the
14 quantized precision of the resulting height field is ± 560 m. Altitudes for clouds as well as
15 smoke and dust plumes are routinely retrieved and reported on a 1.1-km resolution
16 geolocated grid. Because the heights are derived geometrically, they are insensitive to
17 atmospheric temperature profile, emissivity, and radiometric calibration uncertainties.
18 Validation using ground-based 35/94 GHz radar and lidar retrievals of single-layer clouds
19 shows instantaneous accuracies typically in the 500 m – 1 km range [Naud *et al.*, 2002,
20 2004, 2005a,b; Marchand *et al.*, 2007]. Since the technique is purely geometric,
21 comparable accuracy is expected for aerosol layers.

22

23 Owing to the 7-minute interval from when MISR first sees a scene with the forward 70°
24 camera to its last view with the backward 70° camera, the motion of clouds or aerosols
25 during this time contributes to the disparity between image pairs and therefore must be
26 distinguished from the parallax due to height. Consequently, a “wind correction” should
27 in general be applied to the derived stereoscopic heights. This can be derived from a
28 triplet of views (nadir, 46° , and 70°) [Horváth, and Davies, 2001; Zong *et al.*, 2002]. Only
29 the along-track component of motion contributes to the uncorrected parallax error. The
30 magnitudes of wind corrections are typically < 1 km in height. Given the better density of
31 coverage typically obtained with the non-wind-corrected heights, and the generally small

1 height error associated with winds, it is often more convenient to ignore the wind
2 corrections when the resulting uncertainty is tolerable.

3

4 Many aerosol plumes are too tenuous to be reliably detected in the nadir and 26° views
5 which are used in MISR's operational height retrievals. However, the MISR 60° and 70°
6 views are much more sensitive to thin plumes due to the oblique slant path. Specialized
7 runs of the MISR stereo retrieval algorithm demonstrate that it works well with the
8 oblique cameras and improves the height coverage for thin clouds, elevated aerosol
9 layers, and near-surface plumes that the operational product currently misses.

10

11 **2.2 TOMS Aerosol Index**

12

13 The TOMS sensor detects UV absorbing aerosols with the well known AI parameter
14 [*Herman et al*, 1997]. The AI is a measure of the spectral contrast change in the UV (331
15 and 360 nm) resulting from the presence in the atmosphere of light absorbing particles.
16 Thus, the AI is primarily a measure of the ‘missing’ Rayleigh-scattered (and cloud-
17 reflected) radiation at the top of the atmosphere that has been absorbed by the aerosols.
18 The AI magnitude depends strongly on the aerosol layer height above the ground and its
19 optical depth [*Torres et al.*, 1998]. The sensitivity of AI to aerosol layer height can be
20 advantageously used for the unambiguous detection of UTLS absorbing aerosol layers
21 generated by pyro-convection. These highly elevated aerosol layers yield unusually high
22 AI values (10 or larger) clearly associated with their UTLS location. Aerosol Index
23 values for large tropospheric aerosol loads associated with biomass burning of desert
24 dust aerosols are typically no larger than about 8. The ability to detect UTLS absorbing
25 aerosols is a clear improvement of the TOMS version 8 data [*Bhartia*, 2007]. In version 7
26 the AI data was artificially truncated at a value of 12.8. By removing this arbitrary limit
27 the TOMS aerosol data has become a very useful tool for the detection and tracking of
28 pyro-convection activity [*Fromm et al.*, 2005].

29

30 **2.3 MODIS**

31

1 We use Terra MODIS collection 5 level 1b data [*Yang et al.* 2007 and references therein].
2 Our analysis uses 1 km resolution data from visible channels 1, 3, and 4 for true-color
3 imagery, radiance data from the MWIR (3.92 μm) channel 22, and LWIR channels (11
4 and 12 μm) 31 and 32, all expressed as brightness temperature. The MODIS cloud
5 algorithm is discussed by *King et al.* [1992 and 2003].
6

7 **3.0 The Chisholm “day after” Smoke Plume: 29 May 2001**
8

9 The Chisholm fire erupted into pyroconvection in late afternoon on 28 May 2001, at
10 approximately 00 UTC 29 May (FS03). The active convection persisted for about three
11 hours and created an opaque smoke/ice anvil with 11 μm brightness temperatures lower
12 than -60°C , $\sim 2^{\circ}\text{C}$ lower than the tropopause temperature (R07). After 03 UTC the
13 pyroconvection ceased and the residual plume, spanning the tropopause into the
14 lowermost stratosphere, moved north toward the Northwest Territories (NWT). The
15 evolution from pre-pyroCb to residual plume was captured with a day-long animation of
16 GOES visible (during daylight) and midwave IR (MWIR) during nighttime for the period
17 22 UTC 28 May to 2345 UTC 29 May (see auxiliary material, S1). Here the visible
18 frames are overlain with MWIR hot-spot pixels. The animation shows the apparently
19 expanding/heating Chisholm fire, the pyroCb pulsing in two main phases, and the
20 expansive cold/opaque cloud persisting through the night. After sunrise on 29 May the
21 plume is a large, smooth gray cloud that spreads and arcs through NWT and then
22 southeastward toward Hudson Bay. Next we will analyze the post-pyroCb plume with
23 polar-orbiting satellite views at two times during this “day after.”
24

25 **3.1 Nighttime MODIS Views**
26

27 Here we introduce MODIS MWIR and LWIR image data to gain insights into the
28 Chisholm plume’s height, opacity, and plume-particle size. The wealth of IR channels
29 provided by MODIS is great; here we focus on wavelengths and techniques that have
30 been successfully used on clouds and volcanic plumes. The chosen MWIR and LWIR
31 channels are common among the operational geostationary and polar orbiting imagers.

1 Because some operational instruments do not employ a MWIR channel at ~ 3.9 μm , and
2 because this MWIR sensor responds very differently at night vs. daytime (due to reflected
3 sunlight during the day), we introduce a LWIR BT-difference technique that applies
4 consistently in darkness and daylight.

5

6 The 29 May Terra MODIS nighttime IR imagery (0510 UTC, 2210 LST) captures the
7 young plume about 3 hours after pyroconvection collapsed. Figure 1a gives the LWIR
8 BT, which reveals that the Chisholm plume has a substantial area colder than -60°C . As
9 R07 reported, this represents an optically opaque surface above the local tropopause. It is
10 obvious from the low BT that the young Chisholm pyroCb plume is distinctive from all
11 the other clouds in this scene, even though deep nonpyro-convection occurred the prior
12 evening R07.

13

14 Figure 1b gives the 0510 UTC MODIS MWIR BT. During the day, satellite-detected
15 radiation at this wavelength has both reflected solar and emitted terrestrial components
16 [Levizzani and Setvak, 1996]. Here in darkness the MWIR BT pattern closely mimics
17 that of $11\ \mu\text{m}$. In section 3.2.4 we contrast this with the daytime view.

18

19

20 **3.1.1 THIR Brightness Temperature Difference (BTD)**

21

22 Figure 1c contains a brightness-temperature difference image, the difference being
23 between the 11 and $12\ \mu\text{m}$ BT. This so-called “split-window” technique has been used to
24 evaluate volcanic cloud composition [e.g. Wen and Rose, 1994] and meteorological
25 cloud-particle size [Gothe and Grassl, 1993]. Split-window BTD is expected to be zero
26 to slightly positive (i.e. generally $< +1.0\ \text{K}$) for optically thick water-ice clouds.

27 However, for high-altitude optically thin meteorological or volcanic cloud, BTD departs
28 considerably from zero. Thin water-ice clouds over a warmer surface typically give a
29 positive BTD [Yamanouchi *et al.*, 1987]; ash-rich optically thin volcanic clouds may have
30 the reverse effect, leading to negative BTD [Prata, 1989]. BTD has been used
31 effectively as a detection method for yet another peculiar cloud form, the ice-rich high-

1 tropospheric volcanic plume [e.g. *Rose et al.*, 1995 and 2003]. The implication in such
2 cases is that large positive BTD signifies anomalously small ice crystals populating a
3 plume dominated by ice and ice-coated ash. In the present case of the 0510 UTC
4 Chisholm pyroCb blowoff, BTD is near zero in the innermost portions of both residual
5 anvils (where LWIR BT is quite cold), and strongly positive on the perimeter, especially
6 the eastward side. In this zone the cloud edge overlies cloudless skies (note the adjacent
7 “warm” LWIR BT in Figure 1a). The BTD here approaches +10°C, much larger than
8 anywhere else in the MODIS scene.

9

10 According to the radiative transfer modeling schema of Figure 4a in *Guo et al.* [2004],
11 BTD in this range is reserved for a population of cloud particles with exceptionally small
12 effective radius compared to typical cirrus ice crystals. *Prata and Barton* [1993] used
13 both a radiative transfer model and satellite LWIR observations to demonstrate the
14 relation of BTD to 11 μm BT for a range of cloud optical depth and ice crystal effective
15 radius. Figure 6 therein shows that BTD is near zero for clear sky (warm LWIR) and
16 optically thick, cold ice clouds, and increasingly positive in between. The positive
17 departure from zero at a given optical depth or BT increases with decreasing particle size.
18 Maximum BTD for cirrus cloud with nominal effective radius (~30 μm) is ~+3K in
19 simulation and observation (their Figure 14).

20

21 We replicate that type of analysis with the 0510 UT MODIS data in Figure 2, BTD as a
22 function of 11 μm BT. The two scenes containing the pixels shown in Figure 2 are
23 centered on the Chisholm plume (Figure 2a) and meteorological cloud (Figure 2b). Two
24 densest clusters of pixels in Figure 2a are for clear-sky (warm BT) and deep, optically
25 thick (cold) cloud. Like the simulation and observations of *Prata and Barton* [1993], the
26 BTD at these limits is between 0 and 1K. The otherwise most obvious feature in Figure 2
27 is the arcing BTD in between these limits, reaching a maximum of ~+10K. A significant
28 number of pixels exhibit both a very low BT and large positive BTD. Another dense
29 clump of pixels is situated along the BTD~0K line between the coldest and warmest BT.
30 Not shown, but determined in subsetting these data, this cluster came from the deep
31 meteorological cloud west of the smoke plume; the pixels in the arc and those with

1 generally large BTD were in the periphery of the Chisholm plume. The high arc of BTD
2 is consistent with particle effective radius of $\sim 4\text{-}6 \mu\text{m}$ in the plume (much smaller than a
3 nominal cirrus crystal of $\sim 30 \mu\text{m}$), according to *Prata and Barton's* [1993] Figure 6.
4 Figure 2b contains only meteorological cloud. Here the BTD is consistently low for all
5 BT, with some spread in the midrange, a very different signature than the smoke plume's.
6

7 This analysis will be applied again for the daytime 29 May MODIS view of the Chisholm
8 plume, discussed next. However, here we refer the reader to the auxiliary material
9 section for a BTD analysis of the active pyroconvective phase of the Chisholm fire
10 discussed in great detail by R07. The BTD pattern and distinction discussed above is
11 observed to be quite consistent with the post-convection plume.
12

13 **3.2 Daytime 29 May Views**

14 **3.2.1 MODIS Visible**

15 Daytime (1840 UTC; 1140 LST) 29 May Terra MODIS views of the “day after”
16 Chisholm plume are shown in Figure 3. A stretched true-color rendering in Figure 3a
17 illustrates the breadth and abundance of smoke. Along the west, north, and east perimeter
18 the smoke overlies pure white water ice cloud, with weak yet discernable shadowing
19 suggesting higher smoke altitude. To the south a tongue of smoke is translucent over
20 cloud-free sky. The perimeter smoke is relatively gray and smooth, and becomes dark
21 brown and textured toward the core.
22

23 **3.2.2 MODIS LWIR**

24 Figure 3b shows the LWIR image. Much of the smoke plume core is opaque at $\text{BT} < -$
25 40°C , which is a proxy for upper tropospheric altitude and represents a condition assuring
26 homogeneous freezing [Wallace and Hobbs, 1977]. Thus any conventional cloud
27 particles inside this contour would be in the form of ice. We see by comparison with the
28 nighttime view in Figure 1a that the general cloud-top BT has increased but is still quite
29

1 low within the smoke plume—and lower than anywhere else in the image. Considering
2 the spatial correspondence of low BT and smoky color—and the likelihood that this
3 correspondence also applied during the overnight observation—we conclude from this
4 plume-top “warming” that an evolutionary drying out of the smoke plume is taking place.
5 I.e. smoke-polluted ice is sublimating, thereby transitioning to smaller crystals and “dry”
6 smoke. It is worth noting again that the Chisholm plume’s BT is still distinctively low
7 compared with other clouds in this scene, and that there is no clear evidence of other
8 convective blow off from the prior evening’s “regular” convection. Hence the smoke-ice
9 pyroCb plume appears to be a particularly persistent form of anvil blow off compared
10 with “regular” Cb blow off.

11

12 **3.2.3 MODIS BTD**

13

14 The BTD at 1840 UTC is shown in Figure 3c. Here again the Chisholm plume has a
15 distinctive signature—generally large BTD—albeit transformed from the nighttime view
16 $\frac{1}{2}$ day earlier. Here the area generally consisting of the smoky color (Figure 3a) is
17 notably positive in BTD, however the maximum BTD is depressed in comparison to the
18 nighttime view.

19

20 A BTD versus BT analysis like that of section 3.1.3 and supplemental data are shown in
21 Figures 4 and 5. Figure 4 gives the true color and LWIR images with boxes showing
22 where the BTD analysis is performed. We chose an exclusively meteorological cloud
23 subscene (A), the plume and surrounding cloudy/clear area (B), and the core of the cold
24 smoke plume (C). The BTD for A (Figure 5) is uniformly close to zero, from clear-sky
25 through thick/cold cloud BT. For guidance and comparison, the vertical bar at BT \sim 40°
26 is placed to isolate the coldest cloud tops. In addition, a wedge encasing the
27 preponderance of pixels at BT $< -40^{\circ}\text{C}$ is drawn, and replicated on Figure 5b. We see
28 that although nowhere is the plume BTD as large as at 0510 UTC, it is systematically
29 greater than for the meteorological clouds, even in the inner core of the plume.

30

1 To our knowledge this peculiar set of conditions is not documented in the literature.
2 This condition indicates that the plume-top composition and/or prevailing particle size is
3 unique, a conclusion reinforced by the strong smoky coloration. Thus it appears that
4 deep, optically thick “day after” pyroCb plumes can create a uniquely positive BTD
5 signature. It would be valuable in future work to study other similar plumes from both an
6 observational and radiative transfer modeling standpoint.

7

8 **3.2.4 MODIS MWIR**

9

10 Figure 3d gives the MWIR BT of the Chisholm plume and surrounding scene. Here we
11 see significantly greater BT in the coldest part (ref. Figure 3b) of the plume, as compared
12 with the nighttime MWIR and daytime LWIR. The plume’s “warm” MWIR BT is
13 primarily a consequence of increased reflectance associated with small cloud/smoke
14 particles comprising the plume. This high-MWIR-reflectivity/small-cloud-particle
15 relation has been exploited by several investigators (e.g. *Arking and Childs* [1985] and
16 *Rosenfeld and Lensky* [1998]). The “warm” MWIR suggests that the “day after”
17 Chisholm plume is comprised of a sufficient abundance of particles large (and
18 concentrated) enough to create a deep, optically thick LWIR surface yet substantially
19 smaller than a “normal” thick cirrus cloud. Our interpretation of the BTD analysis
20 reinforces the idea that the plume-particle effective size is strongly suppressed in
21 comparison to typical cirrus crystals. This convoluted plume probably represents a
22 transitional mode which—roughly 17 hours after pyroconvection--consists of “dry”
23 smoke particles, a size spectrum of evaporating smoky ice crystals, and pure water-ice
24 cloud crystals. However, it is important to note that the brown color of the plume means
25 that the dominant material at the cloud top is smoke.

26

27 The Chisholm plume’s MWIR pattern in Figure 3d has a notable feature--localized areas
28 wherein the BT is quite low. The color scale we chose shows these areas as green
29 patches. These are mostly found near the northern perimeter of the smoke plume, where
30 according to the visible and LWIR images it is apparent that the smoke plume is higher
31 than the other clouds--colder and casting a shadow on the water-ice cloud deck. In this

1 nearly noon local time frame, the solar azimuth is essentially southerly so the shadows
2 are cast preferentially northward. In shadows, the MWIR BT will behave similarly to
3 nighttime scenes, during which the MWIR and LWIR BT are in closer agreement. We
4 take advantage of this clue in another portion of the Chisholm plume, pointed out by the
5 arrow in Figure 3d. Here in the southwestern plume segment, where the color of the
6 surface is deep brown, the MWIR BT is relatively cold (green). Since this part of the
7 plume is obviously smoky, the most logical reason for the low MWIR BT is shadowing.
8 We examined a zoomed, high-resolution true-color image of this area (not shown) and
9 confirm an apparent higher deck of smoky material southwest of the “cold” MWIR BT,
10 casting a perceptible shadow. Thus the general smoky canopy in visible view of Figure
11 3a has subtle layer textures revealed by the MWIR image. This will have implications on
12 the analysis of the plume height discussed next.

13

14 **3.2.5 MISR**

15

16 The eastern portion of the Chisholm plume sampled by MODIS was simultaneously
17 sampled by MISR also on the Terra satellite (Figure 6). The natural color view is from
18 the MISR 60° forward viewing camera. A pall of yellowish smoke is apparent both
19 above the surface and clouds. The smoke appears thicker at the oblique view angle, thus
20 better areal coverage is obtained and the height retrievals are less sensitive to the
21 underlying cloud deck. The right-side panel is a specially-generated stereo height
22 product using MISR's 46° and 60° forward-pointing cameras. The southern portion of the
23 smoke cloud is at an altitude of about 3.5 km; however, the smoke further to the north is
24 at heights of about 12-13 km asl. The height fields pictured here are uncorrected for wind
25 effects; wind-corrected heights (which have higher accuracy but sparser spatial coverage)
26 for this smoke pall are about 0.5 km higher.

27

28 Figure 7 shows a “profile” of MISR stereo height from the scene in Figure 6. This is
29 simply a frequency distribution of the heights, and we focus on the local maxima. From
30 these we conclude that there are primarily three cloud or plume decks in the MISR scene.
31 By sub-setting the stereo height image we can identify the distinct compositions to the

1 three decks. The lowest deck, at \sim 3.2 km ASL, is the tongue of smoke in the southern
2 portion of the MISR scene. The water-ice cloud deck is mostly between 6.5 and 8.0 km.
3 The high smoke is grouped at 12.0 km, 2-3 km above the tropopause, which here is
4 determined from the 12 UTC 29 May radiosonde from Fort Smith, NWT (not shown).
5 The MISR stereo height retrievals of the “day-after” Chisholm plume are the first
6 independent, objective assessments of the initial stratospheric injection potential of a
7 pyroCb.

8

9 **3.2.6 TOMS AI**

10

11 Next we introduce level 2 TOMS AI (Figure 8). Each pixel is mapped at its effective
12 resolution taking into account the TOMS scan pattern. The time of these measurements
13 is \sim 18 UTC, about 0.75 hr earlier than the Terra overpass, thus sampling approximately
14 the same scene as Terra. The peak AI is 31.2 in the core of the smoke plume, roughly
15 where the MODIS color of the smoke is intense brown. In the version 7 result reported
16 by FS03, the plume core AI had an artificial limit of 12.8, thus we see an immediate
17 advantage to the version 8 AI retrieval. In our investigation of level 2 AI for other thick
18 and deep smoke plumes (which includes published cases cited in Section 1 and several
19 other works in progress), the peak value of 31.2 is unrivaled. Although the aerosol index
20 is ultimately a qualitative indicator, the relevance of values in the 20s and 30s is evident
21 in the context of the MODIS smoke color, low brightness temperature, and MISR stereo
22 heights—they signify a plume with particularly high absorption optical depth and high
23 altitude aerosols. Next we attempt to explore these relations more exhaustively.

24

25 **3.3 Plume and Cloud Height**

26

27 The combination of satellites viewing the 29 May Chisholm day-after plume allows us to
28 glean greater insights into the cloud/plume complex. We choose 65° N for a slice through
29 the core of the smoke. In Figures 9 and 10 we show MISR, MODIS, and TOMS data
30 within $\pm 2^\circ$ latitude, from 125° to 95° W, which spans the smoke pall and continues
31 through a solid deck of pure water-ice clouds to the east and west. In each figure we plot

1 individual pixel values and a solid line, a boxcar average chosen to discern a general
2 pattern but preserve small-scale structure.

3

4 Figure 9 contains MISR stereo heights and TOMS AI, and an effective opaque cloud-top
5 height derived from MODIS LWIR BT. Here we use a temperature profile from NCEP
6 Reanalysis for 12 UTC 29 May interpolated to 65°N, 110°W for the BT-height relation.
7 We see that the entire slice is comprised of cloud; i.e. BT gives an unbroken stretch of
8 elevated heights, from 3.0 to 10.5 km. Cloud tops estimated in this way are near 5 km
9 ASL at the east and west ends, and rise toward the center longitudes. To assess cloud
10 altitude with respect to the tropopause, we determine the local tropopause region using
11 two approaches. The top of the tropopause region is the altitude of the temperature
12 minimum, averaged from the radiosonde profiles at Fort Smith (60°N, 110°W) and
13 Cambridge Bay (69°N, 105°W) for each station's two 29 May measurements. This value
14 is 11.1 km. The tropopause height is calculated by the dynamical definition, using
15 potential vorticity equal to 2.5 potential vorticity units, for the 12 UT 29 May NCEP
16 reanalysis fields. That gives a tropopause height at 65N, 110W of 10.5 km. The opaque
17 cloud tops rise to the tropopause at 114°W. Both AI and BT-estimated cloud heights rise
18 toward the center of this slice at 65°N. At the east and west edges, the AI is essentially
19 zero, which means no absorbing aerosol above the surface observed by TOMS. The
20 sharpest gradients of AI are where the MODIS BT-height gradients are also largest,
21 between ~114°-116°W and 102°-105°W. In the plume-core longitudes, where the BT-
22 height is greatest, the correlation with AI breaks down. The peak AI is at ~111°W, about
23 3° east of the deepest opaque cloud top. Considering the very strong aerosol signal in the
24 MODIS color throughout the core of the plume, the peaking of AI at 111°W may well
25 indicate a local maximum in plume altitude instead of an increase in optical depth. This
26 decoupling of the correlation between LWIR BT and AI would occur if the smoke
27 aerosols here were small enough to be transparent to emitted 11 μ m radiance. In
28 summary the strong positive correlation between the AI and BT-height gradients
29 approaching the plume core indicates that the plume-core AI variation reveals a local
30 maximum in smoke altitude.

31

1 We can assess this independently with the MISR stereo heights. Even though the MISR
2 swath does not cover the entire slice in Figure 9, these data offer a distinct advantage
3 over MODIS LWIR BT, because the stereo height retrieval does not depend on LWIR
4 opacity. Moreover, the MISR swath contains both meteorological cloud and smoke, and
5 covers a portion of the AI swath where values range from marginal to extreme. We see
6 that in the eastern edge of the MISR swath, where AI is ~ 3 (just above noise levels), the
7 typical MISR stereo height (~ 5.7 km) is relatively close to the BT-height estimate
8 (~ 5 km). Here the dominant reflecting layer is the water-ice cloud deck. But the rapidly
9 “thickening” smoke to the west gives MISR stereo heights that increase more rapidly
10 than the MODIS BT-height estimate. Near the western edge of the MISR swath, where
11 AI is over 20, the MISR-MODIS height difference is between 2-5 km. At the western
12 edge the central values of MISR stereo height are above the tropopause and the east-to-
13 west slope is still positive. Here the AI slope is also positive. Thus it appears that the
14 smoke plume to the west of the MISR swath at 65°N continues to increase in height and
15 is mainly in the lowermost stratosphere. It is not possible to resolve the relative
16 contribution of increasing aerosol optical depth and plume altitude for the peaking of AI,
17 but we attempt to address that by invoking MODIS visible data in Figure 10.

18

19 In Figure 10 we keep the MISR stereo heights and TOMS AI, but replace MODIS IR
20 data with visible reflectance at the three wavelengths used in the true-color imagery. By
21 plotting these, color coded accordingly, we can infer changes to optical depth by changes
22 in color with respect to the general whiteness of the water-ice cloud deck that covers the
23 west and east extrema of the slice at 65°N . The white water-ice cloud by definition gives
24 approximately equal reflectances at the three true-color wavelengths. The brown hue of
25 the smoke plume (see Figure 3a) is a result of relatively small reflectance contribution at
26 the short (i.e. blue) wavelength, and dominance of red plus green wavelengths. Total
27 brightness of the scene can be inferred by the “sum” of the three channels’ reflectances.
28 On the west and east edges of the scene in Figure 10, where the water-ice cloud deck
29 dominates, the total visible reflectance is large while the red and green reflectances are
30 equal to or even less than the blue-channel reflectance. Toward the center from each
31 direction the blue-channel reflectance diminishes preferentially, first in a transition zone,

1 and bottoms out between 108.5 and 113W, where there is no discernable change in the
2 intensity of the red+green versus blue reflectance. This may be viewed as a zone where
3 the color-inferred aerosol abundance is both large and essentially unchanging. But it is
4 within this zone that the smoothed AI line increases to a peak at 111°W. Considering our
5 earlier interpretation of the increasing AI being strongly driven by plume altitude, this
6 peaking of AI in the zone of thickest—and approximately constant—smoke aerosol
7 suggests increasing plume altitude even above the high west-end MISR values.

8

9 Finally we come back to the point made in section 3.2.1 regarding smoke layers casting
10 shadows and impacting MWIR BT. This particular feature is somewhat south of 65N,
11 yet at a location where the color, AI, and LWIR BT are all near their most extreme
12 values. Thus the apparent smoke layer discussed in 3.2.1 would be even locally higher
13 than the heights we inferred in the discussion of Figures 9 and 10. It seems logical that in
14 portions of the plume’s core such as this, smoke reached an even higher altitude in the
15 stratosphere.

16

17 **3.4 Stratospheric Smoke Mass**

18

19 We can estimate the mass of smoke injected into the lower stratosphere using inferences
20 gained from the previous analysis. The synthesis of the AI with MODIS and MISR
21 allows us to conclude that the parts of the Chisholm plume with AI greater than a certain
22 threshold are above the tropopause. The analysis of Figures 9 and 10 allow us to suggest
23 two thresholds: AI=15 and 19. The AI=19 threshold is taken as a conservative value—
24 more likely to exclude stratospheric smoke than to include a false stratospheric
25 measurement.

26

27 For the smoke-mass calculation we have performed a special retrieval of smoke optical
28 properties using a radiative transfer model [*Torres et al. 2005*]. To permit a retrieval of
29 extinction optical depth, the simulation fixes the plume effective altitude (based on the
30 MISR stereo heights) at 12 km. The simulation then solves for optical depth and single
31 scatter albedo in an iterative process. After convergence, values for optical depth are

1 available for each pixel. Although not shown, the extinction optical depth of the pixels
2 with AI > 15 ranged between 0.321 and 0.723. We assumed a specific extinction-mass
3 factor of $5 \text{ m}^2/\text{kg}$ [Reid *et al.*, 2005]. Mass per pixel is then the product of the extinction
4 optical depth, specific extinction, and pixel area.

5

6 Integrating the TOMS pixel footprint for the above-mentioned thresholds gives an area
7 range of 1.17×10^5 to $1.63 \times 10^5 \text{ km}^2$ (mean= $1.43 \times 10^5 \text{ km}^2$). The resultant mass of smoke is
8 between 1.44×10^4 and $1.94 \times 10^4 \text{ t}$ (mean= $1.69 \times 10^4 \text{ t}$). As a point of qualitative
9 comparison, we relate this burden to the integrated northern hemispheric stratospheric
10 aerosol burden for near background conditions (1979) calculated by *Kent and*
11 *McCormick* [1984]: $\sim 3 \times 10^5 \text{ t}$. The Chisholm pyroCb injected an amount of smoke
12 aerosol equivalent to approximately 5.6% of the background hemispheric aerosol load.

13

14 Now we reconcile the stratospheric smoke injection with emissions from the Chisholm
15 fire during pyroconvection. Area burned during the blowup on 28 May was
16 approximately 50000 ha [Luderer *et al.*, 2006 and references therein]. Total particulate
17 matter emitted (TPM) from an area burned is expressed per equation (1)

18

19 $\text{TPM} = \text{Emission factor} \times \text{Fuel load/area} \times \text{Area burned}$ (1).

20

21 Combusted fuel consists of surface and crown matter. For the area burned during the 28
22 May pyroconvection this is the sum of $\sim 9.0 \text{ kg/m}^2$ for the surface [ASRD, 2001] and 1.0
23 kg/m^2 for the crown [Brian J. Stocks, personal communication, 2007]. For emission
24 factor we take two values from Table 6 of Reid *et al.*, [2005] for temperate/boreal forest,
25 to give a range of emissions (expressed as the ratio of kg emitted to kg consumed): those
26 of Hobbs *et al.* [1996] (.018) and Nance *et al.* [1993] (.029). These bracketing values
27 result in total particulate emissions between $9.0 \times 10^4 \text{ t}$ and $1.45 \times 10^5 \text{ t}$. The stratospheric
28 smoke-mass injection from the Chisholm pyroCb was between 0.29% and 0.39% of fuel
29 consumed during pyroconvection. In relation to TPM, the fraction of stratospheric smoke
30 was between 10% and 22%. The simulation of the Chisholm pyroCb by Trentmann *et al.*
31 [2006] resulted in a stratospheric aerosol injection proportion of 8%.

1

2 **4.0 Comparison of 29 and 30 May Views**

3

4 Figure 11 contains the MODIS daytime views of the Chisholm plume on 30 May (1745
5 UTC). At this time the plume stretches from NWT across Hudson Bay and into the Great
6 Lakes and Michigan. According to the true color image in Figure 11a the smoke is
7 evidently thinner than on 29 May and spread over a much greater horizontal footprint.
8 Skies over adjacent land surfaces in Canada and US are apparently cloud free. Over
9 Hudson Bay there appears to be widespread ice and some overlying water-ice cloud,
10 detectable through the translucent smoke. The LWIR image of Figure 11b reinforces the
11 idea that land areas of the upper Midwest US and Manitoba are cloud free. Northern and
12 central Hudson Bay has opaque low and mid-tropospheric cloudiness. The smoke plume
13 from James Bay to Lake Superior appears to have a residual signal in LWIR, indicating
14 that the transition from opaque smoky ice to transparent smoke is not yet complete, ~1.5
15 days after pyroconvection.

16

17 TOMS AI map for 30 May is shown in Figure 12a. The times of the Terra and Earth-
18 Probe overpasses coincide within two hours. Not surprisingly, the same general shape of
19 the MODIS view of the plume is reproduced. However, the AI gives detail that allows us
20 to infer local extrema in plume altitude. There are two local AI maxima. In both areas
21 AI>20, values representative of the core of the 29 May plume. At neither AI maximum is
22 the visible optical thickness apparently as large as it was on 29 May—thus the large AI
23 probably indicates plume altitude extremes. One of the maxima is west of James Bay.
24 Here the plume in the true-color MODIS view is obvious but portions of the plume south
25 of the AI maximum and north of the Canada/US border are equally optically thick in the
26 visible--and LWIR--but do not create an equal AI. Thus this and the other AI maximum
27 to the north probably identify where the plume protrudes most deeply into the
28 stratosphere. Moreover, this section of the plume's footprint lags far behind the
29 downwind edge over Michigan. Considering the establishment that the core of the 29
30 May plume topped out well into the lower stratosphere—thus above jet stream altitude—
31 it is reasonable to conclude that the young Chisholm smoke plume spanned the UTLS,

1 and as it deformed during advection the part at jet-stream level advanced far beyond (i.e.
2 to Michigan on 30 May) the highest stratospheric smoke over and/or near Hudson Bay.

3

4 **5.0 The Chisholm Plume's First Week**

5

6 The evolution of the Chisholm smoke plume for the balance of its first week of existence
7 is captured in the AI maps of Figure 12. As expected, the maximum AI on each day
8 between 31 May and 4 June declines as the plume shears horizontally. The plume snakes
9 into a wave signature on 31 May, crossing the US Atlantic coast and extending to
10 Labrador. Note the reproduction of two localized AI maxima, one in “mid” plume and
11 the other lagging over James Bay. On 1 June, as the plume takes on a complete wave
12 signature between Quebec and just south of Iceland, a distinct AI maximum appears in
13 the “trough” of the wave over the Atlantic near 38N (again lagging far behind the
14 plume’s leading edge). By 2 June the leading portion of the Chisholm smoke plume
15 passes over the United Kingdom and resides as far eastward as France, while the western
16 portion (including the AI maximum) starts to form into an apparent cyclonic shape over
17 the central Atlantic. On 3 and 4 June the AI pattern breaks up; the downwind (i.e.
18 eastern) edge enters the Mediterranean region while the lagging plume over the central
19 Atlantic appears to swirl and stagnate. In general the persistence of an AI plume for one
20 week and the distance between Alberta and the Mediterranean Sea is by itself an indicator
21 of an extremely unusual aerosol perturbation. This perturbation consists of a large
22 abundance of aerosol material and a residence altitude likely from upper tropospheric jet
23 stream levels to several km into the lower stratosphere.

24

25 **6.0 Summary**

26

27 Our aim was to characterize and establish important parameters related to a young
28 stratospheric smoke plume. The case chosen is that of the Chisholm (Alberta) pyroCb of
29 28 May 2001. This case, now the subject of multiple papers, is an excellent example of
30 the most extreme form of pyroconvection because of the many space- and ground-based
31 observations of the blowup and aftermath. We focused on the immediate aftermath (from

1 hours to 1 week old), which is an important timeframe for regional or global
2 transport/chemistry/cloud-process models to consider as initial conditions.

3

4 The Chisholm pyroCb (FS03, R07) has now been confirmed to have injected a large
5 quantity of smoke into the lower stratosphere, even above the altitude of the local
6 temperature minimum, as evidenced from satellite imagery less than $\frac{1}{2}$ day after the
7 pyroconvection ended. MISR stereoscopic height retrievals give the first independent,
8 objective, and detailed confirmation of stratospheric smoke in a young pyroCb plume.
9 MODIS true-color and IR imagery, TOMS aerosol index and MISR stereo heights
10 together allowed us to gain advanced insights into these peculiar UTLS pyroCb plumes.
11 For instance, level 2 AI can reveal variations of plume altitude within a broad or optically
12 thick plume.

13

14 The Chisholm pyroCb stratospheric plume on the day after injection covered an area of
15 approximately $1.43 \times 10^5 \text{ km}^2$, with a mass estimated at between 1.44×10^4 and $1.94 \times 10^4 \text{ t}$.
16 This represented between 10 and 22% of the total particulate emissions during
17 pyroconvection, and about 0.3% of the total fuel consumed. It also was related to
18 hemispheric sulfate aerosol background burden; estimated to be roughly 5.6% of
19 hemispheric aerosol by mass.

20

21 Visible, MWIR BT and LWIR BTD analysis of the “day after” Chisholm plume led us to
22 conclude that the uppermost particles in the young plume were a peculiar mixture of
23 unadulterated dry smoke and smoky ice crystals significantly smaller than normal high
24 cirrus ice crystals. The color of the plume and AI proved that the dominant material in
25 the plume was smoke. This smoky cloud’s core was effectively opaque in LWIR at the
26 tropopause.

27

28 The Chisholm smoke plume “dried out” into transparent (in LWIR) smoke in a process
29 that exceeded 1.6 days, a significantly longer sublimation time scale than for normal
30 cumulonimbus cirrus blow off. AI of the aging Chisholm plume was used to locate the
31 maximum stratospheric plume height, which lagged far behind the leading edge. After

1 one week the plume's leading edge had snaked as far east the central Mediterranean; a
2 portion (perhaps the highest smoke) of the plume lagged, stagnated, and circulated over
3 the mid-Atlantic. The companion paper by *Fromm et al.* [2007] presents initial profile
4 measurements of the Chisholm plume there on 5 June and upstream over Quebec (near
5 the tail end of the AI plume) on 1 June.

6

7 For the first time, several important initial constraints are placed on an extreme pyroCb
8 event that polluted an entire hemisphere (see the companion paper, *Fromm et al.* [2007]).
9 A single pyroconvective explosion has now been documented from the ground to the
10 stratosphere with metrics that will enable comparisons with other pyroCbs, volcanoes,
11 and conventional aerosol measures for the stratosphere.

12

13

14 **Acknowledgements**

15 We wish to thank Rong Rong Li for her assistance with the MODIS data. We are also
16 grateful to Bill Rose for his expert insights with respect to the split window analysis.
17 MDF and EPS were supported in part by a grant from the NASA Office of Earth Science
18 and in part by NRL internal funding (from the Office of Naval Research). The views,
19 opinions, and findings in this report are those of the authors, and should not be construed
20 as an official NOAA and or U.S. Government position, policy, or decision.

21

1
2 **References**
3

4 Arking, A., and J. Childs (1985), Retrieval of Cloud Cover Parameters from
5 Multispectral Satellite Images, *J. Clim. and Appl. Meteor.*, 24, 322-333.

6 ASRD: Final Documentation Report (2001), Chisholm Fire (LWF-063), Forest
7 Protection Division, ISBN 0-7785-1841-8, Tech. rep., Alberta Sustainable
8 Resource Development.

9 Bhartia, P.K. (2007), Total Ozone from backscattered ultraviolet measurements, pp 48-63
10 in *Observing Systems for Atmospheric Composition*, G. Visconti, P. Di Carlo,
11 W.H. Brune, M. Schoeberl, A. Wahner, editors, Springer.

12 Damoah, R., N. Spichtinger, R. Servranckx, M. Fromm, E. Eloranta, I. Razenkov,
13 P. James, M. Shulski, C. Forster, and A. Stohl (2006), A case study of pyro-
14 convection using transport model and remote sensing data, *Atmos. Chem. Phys.*,
15 6, 173-185.

16 Diner, D.J., J.C. Beckert, T.H. Reilly, C.J. Bruegge, J.E. Conel, R. Kahn, J.V.
17 Martonchik, T.P. Ackerman, R. Davies, S.A.W. Gerstl, H.R. Gordon, J-P. Muller,
18 R. Myneni, R.J. Sellers, B. Pinty, and M.M. Verstraete (1998), Multi-angle
19 Imaging SpectroRadiometer (MISR) description and experiment overview. *IEEE*
20 *Trans. Geosci. Rem. Sens.*, 36 (4), 1072-1087.

21 Fromm, M., J. Alfred, K. Hoppel, J. Hornstein, R. Bevilacqua, E. Shettle, R. Servranckx,
22 Z. Li, and B. Stocks (2000), Observations of boreal forest fire smoke in the
23 stratosphere by POAM III, SAGE II, and lidar in 1998, *Geophys. Res. Lett.*, 27,
24 1407-1410.

25 Fromm, M., and R. Servranckx (2003), Transport of forest fire smoke above the
26 tropopause by supercell convection, *Geophys. Res. Lett.*, 30 (10), 1542.

27 Fromm, M., R. Bevilacqua, R. Servranckx, J. Rosen, J.P. Thayer, J. Herman, and D.
28 Larko (2005), Pyro-cumulonimbus injection of smoke to the stratosphere:
29 observations and impact of a super blowup in northwestern Canada on 3-4 August
30 1998, *J. Geophys. Res.*, 110 (D8), D08205.

1 Fromm, M., A. Tupper, D. Rosenfeld, R. Servranckx, and R. McRae (2006), Violent
2 pyro-convective storm devastates Australia's capital and pollutes the stratosphere
3 *Geophys. Res. Lett.*, 33, L05815, doi:10.1029/2005GL025161.

4 Gothe, M. and H. Grassl (1993), Satellite remote sensing of the optical depth and mean
5 crystal size of thin cirrus clouds and contrails, *Theor. Appl. Climatol.*, 48, 101-
6 113.

7 Guo, S., W. Rose, G. Bluth, I. M. Watson (2004), Particles in the great Pinatubo volcanic
8 cloud of June 1991: The role of ice, *Geochem. Geophys. Geosystems*, 5, 5,
9 Q05003, doi:10.1029/2003GC000655.

10 Herman, J.R., P.K. Bhartia, O. Torres, C. Hsu, C. Seftor, and E. Celarier (1997), Global
11 Distribution of UV-absorbing Aerosols From Nimbus-7/TOMS data, *J. Geophys.*
12 *Res.*, 102, 16911-16922.

13 Hobbs, P., J. Reid, J. Herring, J. Nance, R. Weiss, J. Ross, D. Hegg, R. Ottmar, C.
14 Lioussse (1996), Particle and trace-gas measurements in smoke from prescribed
15 burns of forest products in the Pacific Northwest, in: *Biomass Burning and Global*
16 *Change*, Vol. 1, edited by: Levine, J. S., 697-715, MIT Press, New York, 1006.

17 Horváth, Á. and R. Davies (2001), Simultaneous retrieval of cloud motion and height
18 from polar-orbiter multiangle measurements. *Geophys. Res. Lett.* 28, 2915-2918.

19 Jost, H., K. Drdla, A. Stohl, L. Pfister, M. Loewenstein, J. Lopez, P. Hudson, D. Murphy,
20 D. Cziczo, M. Fromm, T. Bui, J. Dean-Day, M. Mahoney, E. Richard, N.
21 Spichtinger, J. Yellovic, E. Weinstock, J. Wilson, and S. Wofsy (2004), In-situ
22 observations of mid-latitude forest fire plumes deep in the stratosphere, *Geophys.*
23 *Res. Lett.*, 31, L11101, doi:10.1029/2003GL019253.

24 Jovanovic, V.M., M.A. Bull, M.M. Smyth, and J. Zong (2002), MISR in-flight camera
25 geometric model calibration and georectification performance. *IEEE Trans.*
26 *Geosci. Remote Sens.* 40, 1512-1519.

27 Jovanovic, J., C. Moroney, and D. Nelson (2007), Multiangle geometric processing for
28 globally geo-located and co-registered MISR image data. *Rem. Sens. Environ.*,
29 107, 22-32.

1 Kaufman, Y. J., D. Tanré, L. A. Remer, E. F. Vermote, A. Chu, and B. N. Holben (1997),
2 Operational remote sensing of tropospheric aerosol over land from EOS moderate
3 resolution imaging spectroradiometer. *J. Geophys. Res.*, 102, 17051-17068.

4 Kent, G., and M. McCormick (1984), SAGE and SAM II measurements of global
5 stratospheric aerosol optical depth and mass loading, *J. Geophys. Res.*, 89, D4,
6 5303-5314.

7 King, M. D., Y. J. Kaufman, W. P. Menzel, and D. Tanré (1992), Remote sensing of
8 cloud, aerosol, and water vapor properties from the Moderate Resolution Imaging
9 Spectrometer (MODIS). *IEEE Trans. Geosci. Remote Sens.*, 30, 1-27.

10 King, M. D., W. P. Menzel, Y. J. Kaufman, D. Tanré, B. C. Gao, S. Platnick, S. A.
11 Ackerman, L. A. Remer, R. Pincus, and P. A. Hubanks (2003), Cloud and aerosol
12 properties, precipitable water, and profiles of temperature and humidity from
13 MODIS. *IEEE Trans. Geosci. Remote Sens.*, 41, 442-458.

14 Levizzani, V. and M. Setvak (1996), Multispectral, high resolution satellite observations
15 of plumes on top of convective storms, *J. Atmos. Sci.*, 53, 361-369.

16 Livesey, N., M. Fromm, J. Waters, G. Manney, M. Santee, and W. Read (2004),
17 Enhancements in lower stratospheric CH₃CN observed by UARS MLS following
18 boreal forest fires, *J. Geophys. Res.*, 109 (D06308), doi:10.1029/2003JD004055.

19 Luderer, G., J. Trentmann, T. Winterrath, C. Textor, M. Herzog, H. F. Graf, M. O.
20 Andreae (2006), Modeling of biomass smoke injection into the lower stratosphere
21 by a large forest fire (Part II): sensitivity studies, *Atmos. Chem. Phys.*, 6, 5261-
22 5277.

23 Marchand, R.T., T.P. Ackerman, and C. Moroney (2007), An assessment of Multi-angle
24 Imaging SpectroRadiometer (MISR) stereo-derived cloud top heights and cloud
25 top winds using ground-based radar, lidar and microwave radiometers. *J.*
26 *Geophys. Res.*, in press.

27 Moroney, C., R. Davies, and J-P. Muller (2002), Operational retrieval of cloud-top
28 heights using MISR data. *IEEE Trans. Geosci. Remote Sens.* 40, 15-41.

29 Muller, J-P., A. Mandanayake, C. Moroney, R. Davies, D.J. Diner, and S. Paradise
30 (2002), MISR stereoscopic image matchers: Techniques and results. *IEEE Trans.*
31 *Geosci. Remote Sens.* 40, 1547-1559.

1 Nance, J., P. Hobbs, L. Radke, D. Ward (1993), Airborne measurements of gases and
2 particles from an Alaskan wildfire, *J. Geophys. Res.*, 98, 14873-14882.

3 Naud, C., J.-P. Muller, and E. E. Clothiaux (2002), Comparison of cloud top heights
4 derived from MISR stereo and MODIS CO2-slicing, *Geophys. Res. Lett.*, 29, Art.
5 No. 1795.

6 Naud C., J.-P. Muller, M. Haeffelin, Y. Morille, and A. Delaval (2004), Assessment of
7 MISR and MODIS cloud top heights through inter-comparison with a back-
8 scattering lidar at SIRTA, *Geophys. Res. Lett.*, 31, L04114.

9 Naud, C. M., J. P. Muller, E. C. Slack, C. L. Wrench, and E. E Clothiaux (2005a),
10 Assessment of the performance of the Chilbolton 3-GHz advanced meteorological
11 radar for cloud-top-height retrieval, *J. App. Meteor.*, 44, 866-877.

12 Naud, C. M., J.-P. Muller, E. E. Clothiaux, B. A. Baum, and W. P. Menzel (2005b),
13 Intercomparison of multiple years of MODIS, MISR and radar cloud-top heights.
14 *Annales Geophysicae*, 23, 1–10.

15 Penndorf, R. (1953), *On the phenomenon of the colored sun, especially the “blue” sun of*
16 *September 1950*, AFCRC Technical Report 53-7, Air Force Cambridge Research
17 Center, Cambridge, Massachusetts, 20, 41 pp.

18 Prata, A. J. (1989), Infared radiative transfer calculations for volcanic ash clouds,
19 *Geophys. Res. Lett.*, 16, 11, 1293-1296.

20 Prata, A. J. and I. J. Barton (1993), A multichannel, multiangle method for the
21 determination of infrared optical depth of semitransparent high cloud from an
22 orbiting satellite. Part I: Formulation and simulation, *J. Applied Meteor.*, 32, 7,
23 1623-1637.

24 Reid, J., R. Koppmann, T. Eck, and D. Eleuterio (2005), A review of biomass burning
25 emissions part II: intensive physical properties of biomass burning particles,
26 *Atmos. Chem. Phys.*, 5, 799-825.

27 Rose, W., D. Delene, D. Schneider, G. Bluth, A. Krueger, I. Sprod, C. McKee, H. Davies
28 and G. Ernst (1995), Ice in the 1994 Rabaul eruption cloud: implications for
29 volcano hazard and atmospheric effects, *Nature*, 375, 477-479.

30 Rose, W., Y. Gu, I. Watson, T. Yu, G. Bluth, A. Prata, A. Krueger, N. Krotkov, S. Carn,
31 M. Fromm, D. Hunton, G. Ernst, A. Viggiano, T. Miller, J. Ballentin, J. Reeves, J.

1 Wilson, B. Anderson D. Flittner (2003), The February-March 2000 eruption of
2 Hekla, Iceland from a satellite perspective,*AGU Geophysical Monograph 139: Volcanism and the Earth's Atmosphere, ed by A Robock and C Oppenheimer, pp. 107-132*, ISBN 0-87590-998-1.

5 Rosenfeld, D., and I. Lensky (1998), Spaceborne sensed insights into precipitation
6 formation processes in continental and maritime clouds, *The Bulletin of American
7 Meteorological Society*, 79, 2457-2476.

8 Rosenfeld, D., M. Fromm, J. Trentmann, G. Luderer, M. Andreae, R. Servranckx (2007),
9 The Chisholm firestorm: observed microstructure, precipitation, and lightning
10 activity of a pyro-cumulonimbus, *Atmos. Chem. Phys.*, 7, 645-659.

11 Siebert, J., C. Timmis, G. Vaughan, and K. Fricke (2000), A strange cloud in the Arctic
12 summer 1998 above Esrange (68N), Sweden, *Annales Geophysicae*, 18, 505-509.

13 Stenchikov, G., M. Fromm, E. Shettle (2006), Study of long-range transport and
14 stratosphere-troposphere exchange in smoke plumes from forest fires caused by
15 aerosol solar heating", *Eos Trans. AGU*, 87(52), Fall Meet. Suppl., Abstract
16 A43A-0114.

17 Torres, O., P. K. Bhartia, J. R. Herman, Z. Ahmad, J. Gleason (1998), Derivation of
18 aerosol properties from satellite measurements of backscattered ultraviolet
19 radiation: Theoretical basis, *J. Geophys. Res.*, 103(D18), 23321-23322,
20 10.1029/98JD02709.

21 Torres O., P.K. Bhartia, J.R. Herman and Z. Ahmad (2002), Derivation of aerosol
22 properties from satellite measurements of backscattered ultraviolet radiation.
23 Theoretical Basis, *J. Geophys. Res.*, 103, 17099-17110, 1998.Torres, O., P.K.
24 Bhartia, J.R. Herman, A. Sinyuk, P. Ginoux, and B. Holben, A Long-term record
25 of aerosol optical depth from TOMS observations and comparison to AERONET
26 measurements, *J. Atmos. Sci.*, 59(3), 398-413.

27 Torres, O., P. K. Bhartia, A. Sinyuk, and E. Welton (2005), TOMS Measurements of
28 Aerosol Absorption from Space: Comparison to SAFARI 2000 Ground-based
29 Observations, *J. Geophys. Res.*, 110, D10S18, doi:10.1029/2004JD004611

30 Trentmann, J., G. Luderer, T. Winterrath, M. D. Fromm, R. Servranckx, C. Textor, M.
31 Herzog, H.-F. Graf, M. O. Andreae (2006), Modeling of biomass smoke injection

1 into the lower stratosphere by a large forest fire (Part I): reference simulation,
2 *Atmos. Chem. Phys.*, 6, 5247-5260.

3 Tupper A., J. S. Oswalt, D. Rosenfeld (2005), Satellite and radar analysis of the volcanic-
4 cumulonimbi at Mount Pinatubo, Philippines, 1991, *J. Geophys. Res.*, 110,
5 D09204, doi:10.1029/2004JD005499.

6 Waibel, A.E., H. Fischer, F.G. Wienhold, P.C. Siegmund, B. Lee, J. Ström, J. Lelieveld,
7 and P.J. Crutzen (1999), Highly elevated carbon monoxide concentrations in the
8 upper troposphere and lowermost stratosphere at northern midlatitudes during the
9 STREAM II summer campaign in 1994, *Chemosphere: Global Change Science*,
10 1, 233-248.

11 Wallace, J. and P. Hobbs (1977), *Atmospheric Science: An Introductory Survey*,
12 Academic Press, ISBN 0-12-732950-1.

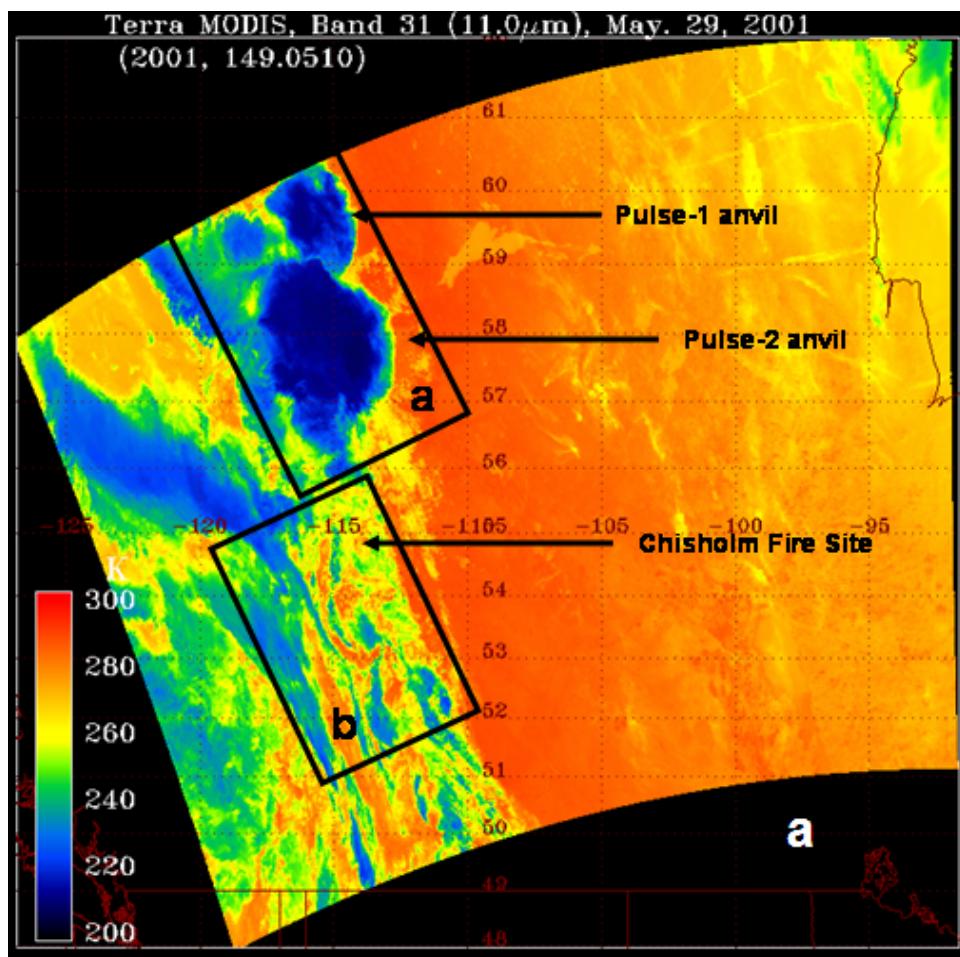
13 Wen, S. and W. Rose (1994), Retrieval of sizes and total masses of particles in volcanic
14 clouds using AVHRR bands 4 and 5, *J. Geophys. Res.*, 99, 5421-5431.

15 Yamanouchi, T., K. Suzuki, and S. Kawaguchi (1987), Detection of clouds in Antarctica
16 from infrared multispectral data of AVHRR, *J. Meteorol. Soc.*, 65, 949-961.

17 Yang, P., L. Zhang, G. Hong, S. L. Nasiri, B. A. Baum, H. L. Huang, M. D. King, and S.
18 Platnick (2007), Differences between collection 4 and 5 MODIS ice cloud
19 optical/microphysical products and their impact on radiative forcing simulations.
20 *IEEE Trans. Geosci. Remote Sens.* (In Press).

21 Zong, J., R. Davies, J-P. Muller, and D.J. Diner (2002), Photogrammetric retrieval of
22 cloud advection and top height from the Multi-angle Imaging SpectroRadiometer
23 (MISR). *Photogramm. Eng. and Remote Sens.* 68, 821-829.

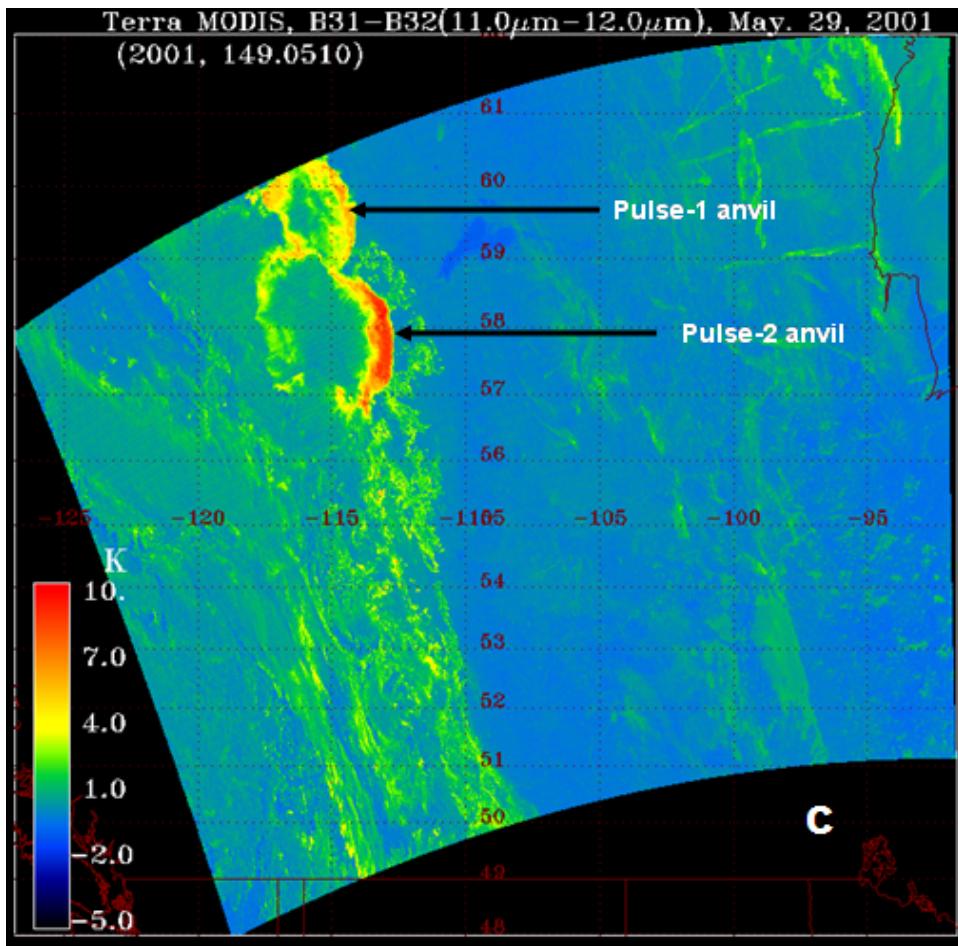
24


25

26

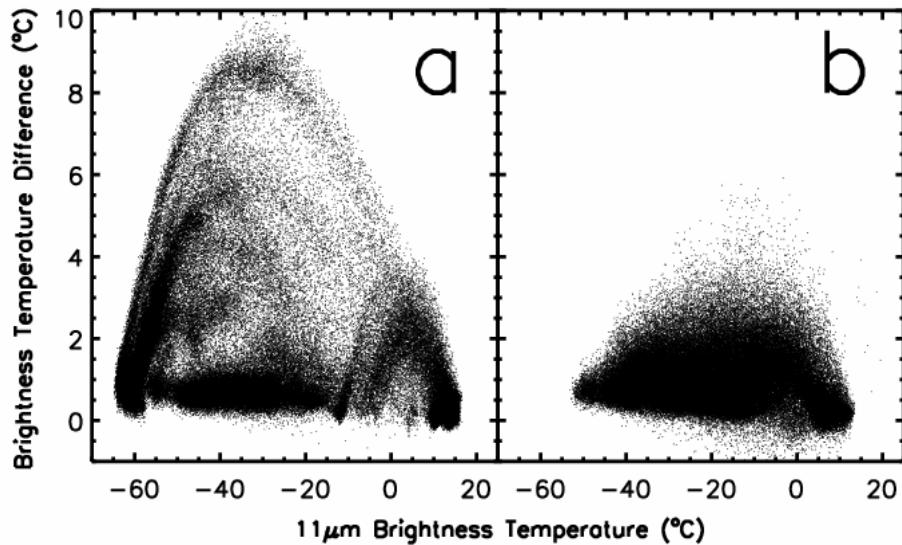
27

1 **Figures**


2

3

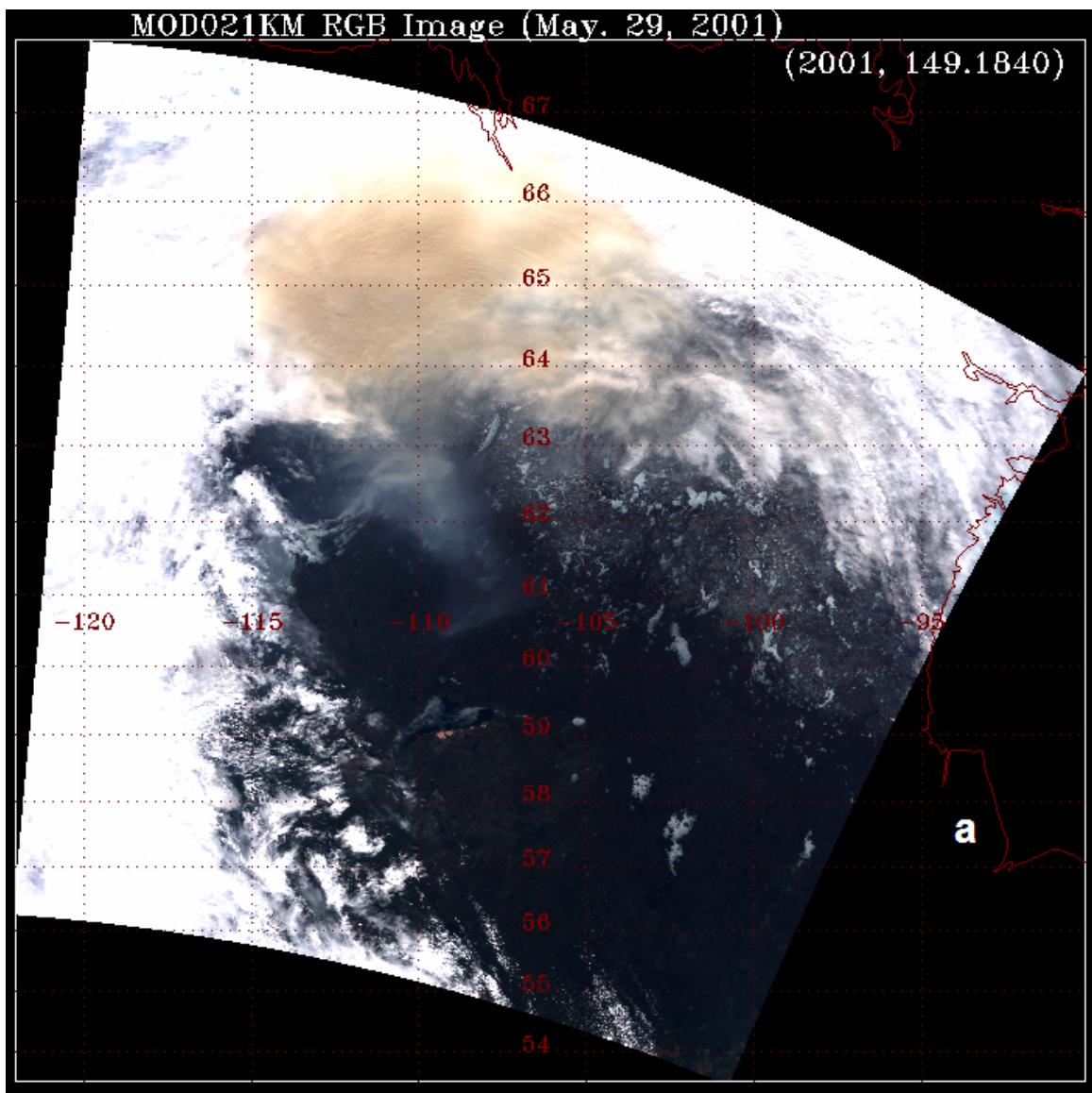
1
2

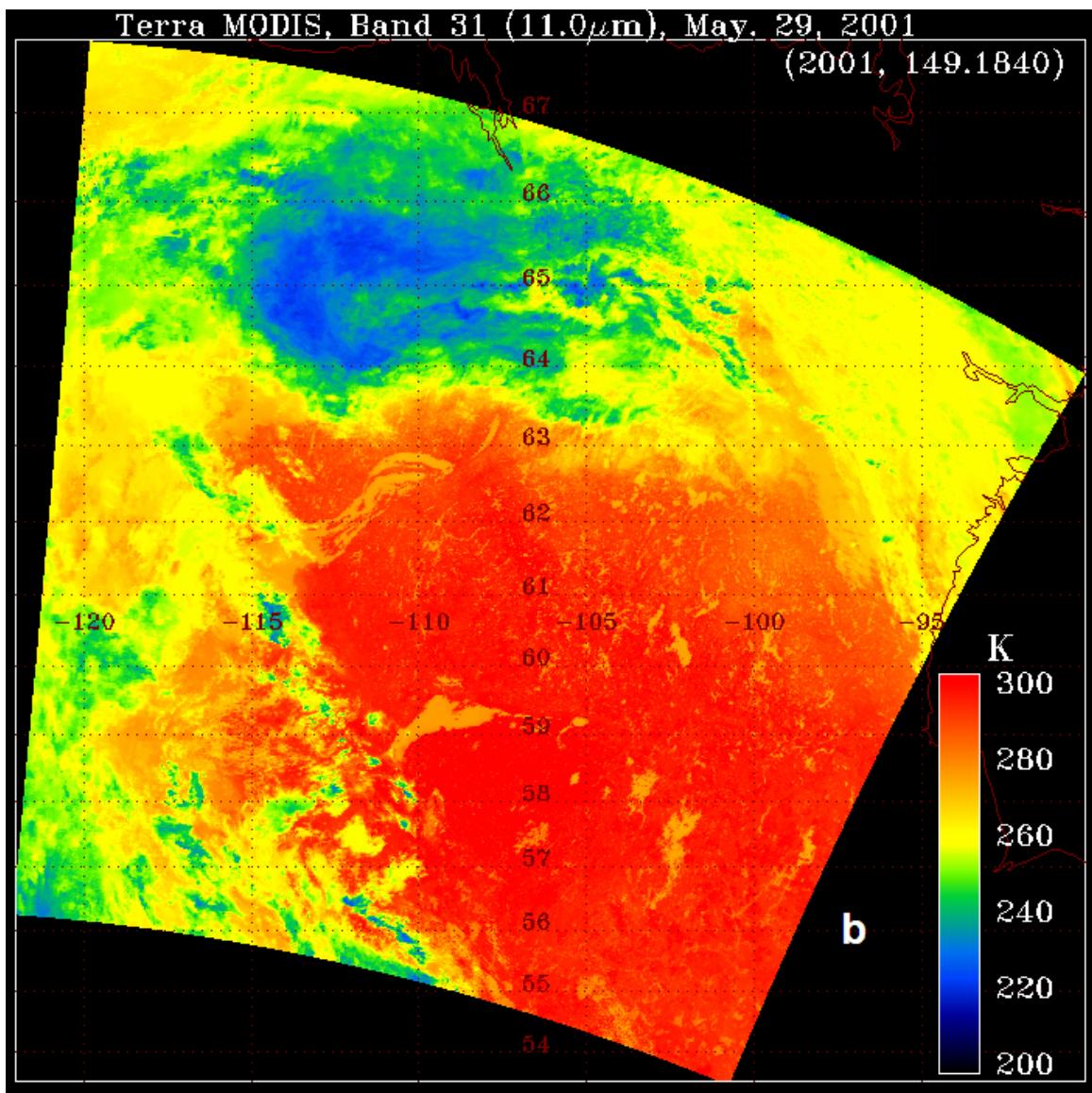


1

2

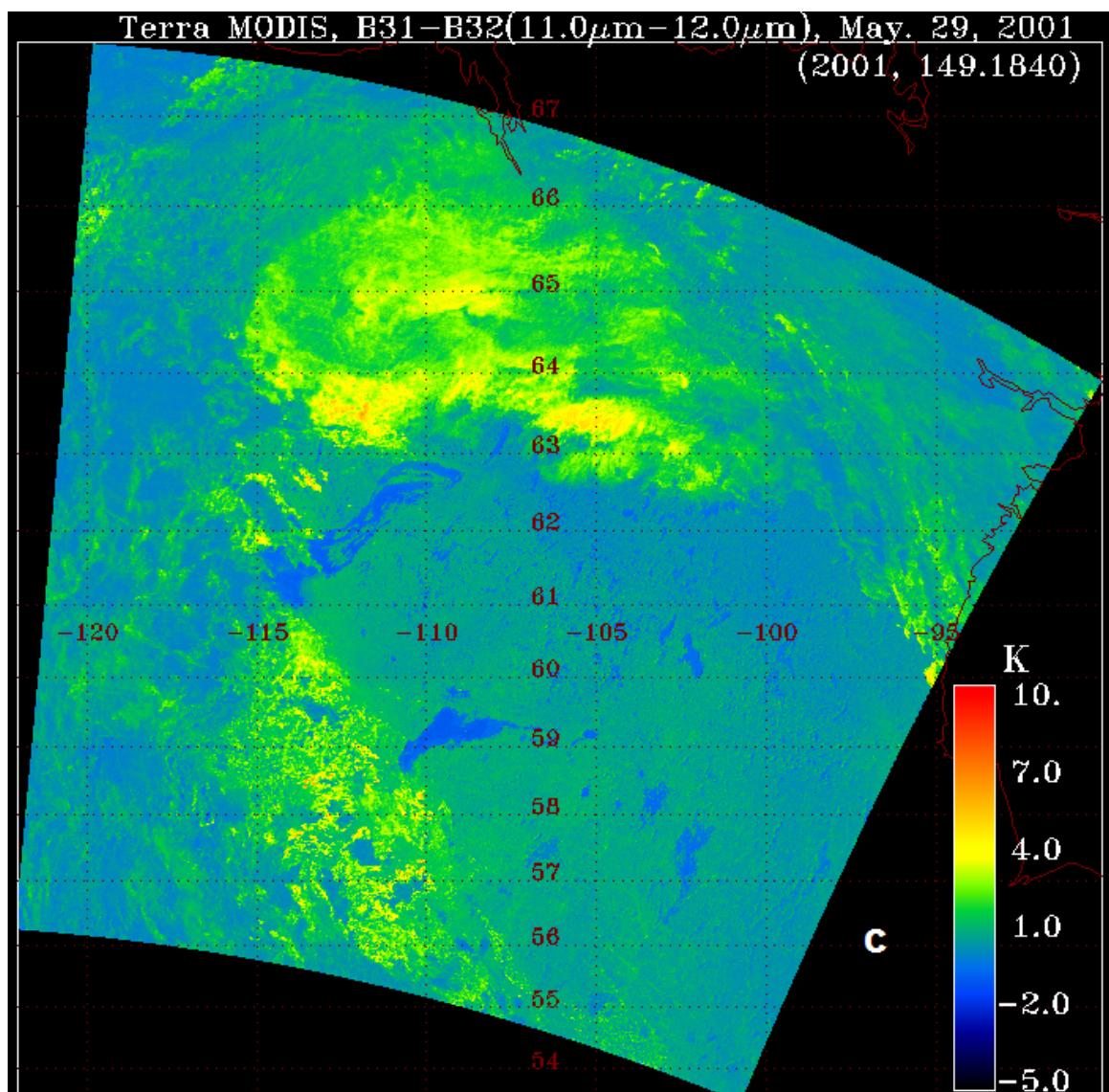
3 **Figure 1.** Terra MODIS IR nighttime brightness temperature (BT) imagery at 0510 UTC
4 29 May 2001. (a) $11\mu\text{m}$ BT. (b) $3.9\mu\text{m}$ BT. (c) $11\text{-}12\mu\text{m}$ brightness temperature
5 difference (BTD). Arrows identify features discussed in the text. Boxes on (a) show
6 scenes for which a BTD analysis is performed (Figure 2).

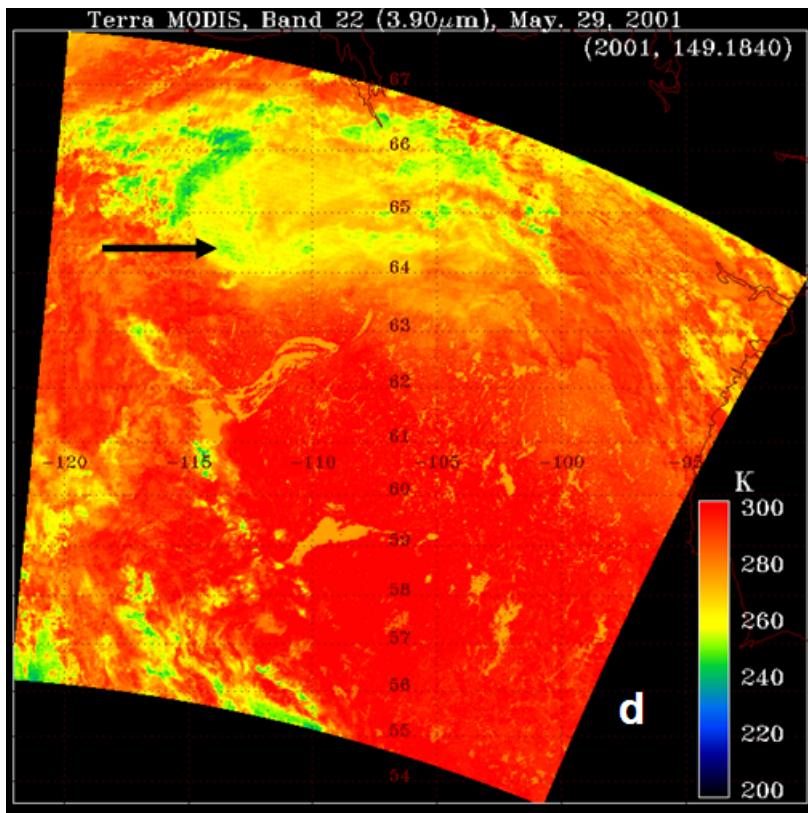

7


1
2

3 **Figure 2.** MODIS split-window BTD analysis, 0510 29 May 2001. Independent variable
4 is 11 μ m BT (°C); dependent variable is 11-12 μ m BTD. (a) scene focused on Chisholm
5 pyroCb blowoff; includes some meteorological cloud and clear sky. (b) scene with
6 exclusively meteorological cloud that includes many with cold (i.e. deep, higher than the
7 homogeneous freezing level) cloud tops.

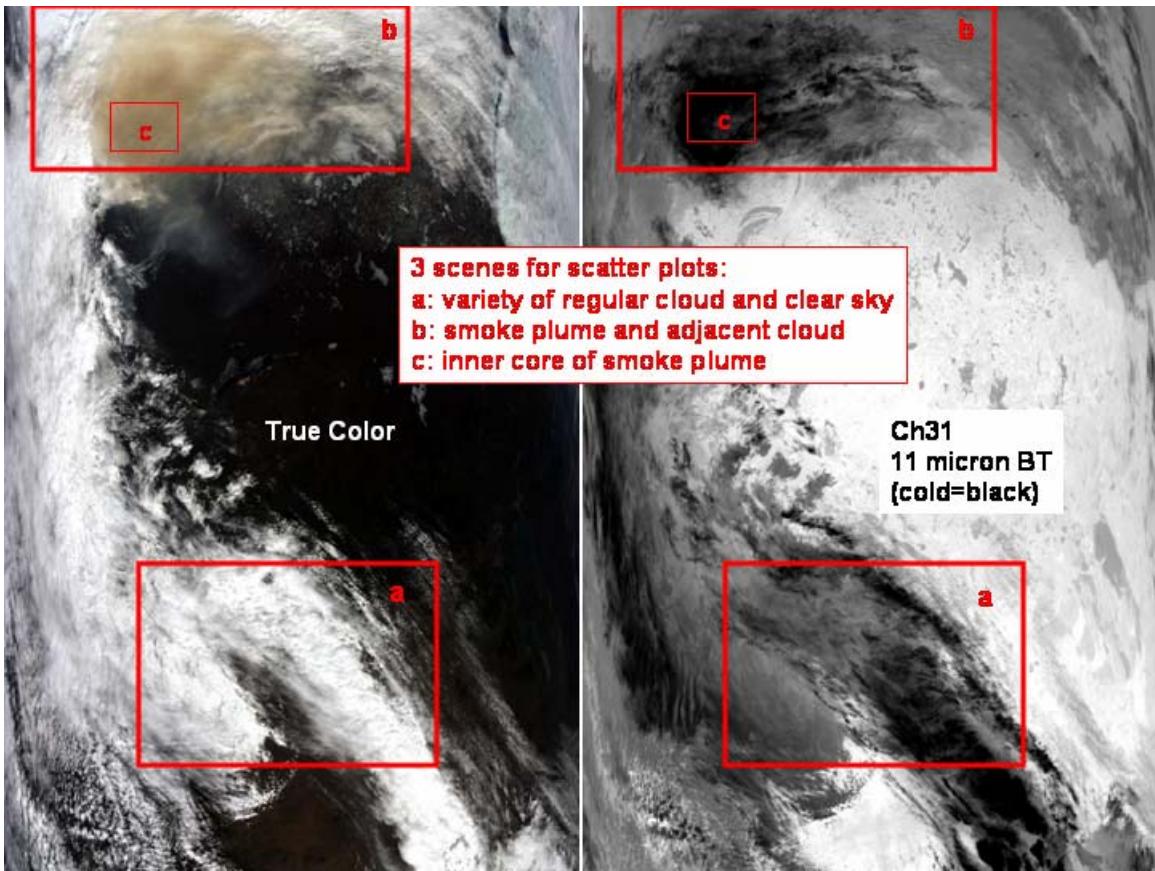
8




1
2

1

2

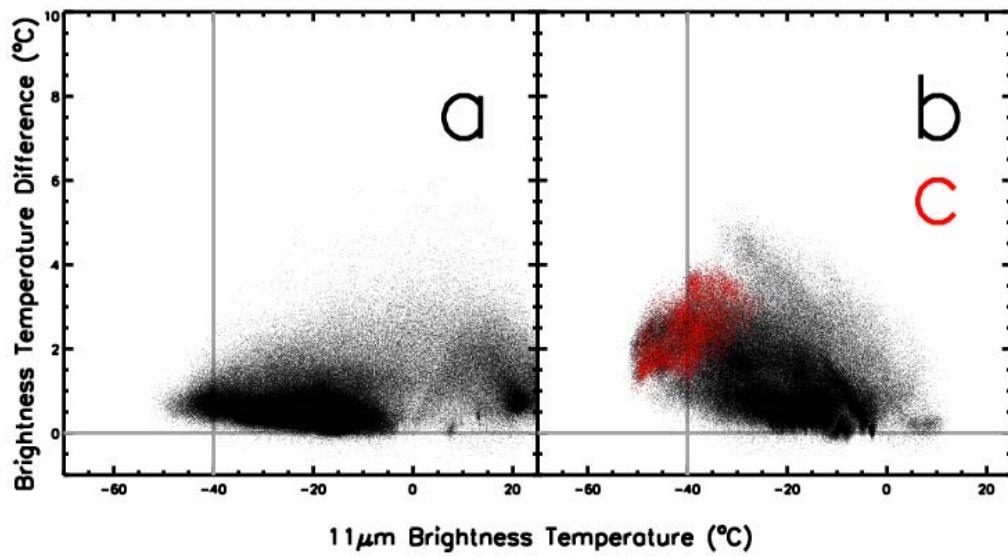


1

2 **Figure 3.** MODIS daytime true-color and infrared imagery at 1840 UTC 29 May 2001.

3 (a) stretched true color. (b) 11 μ m BT. (c) 11-12 μ m BTD. (d) 3.9 μ m BT.

4

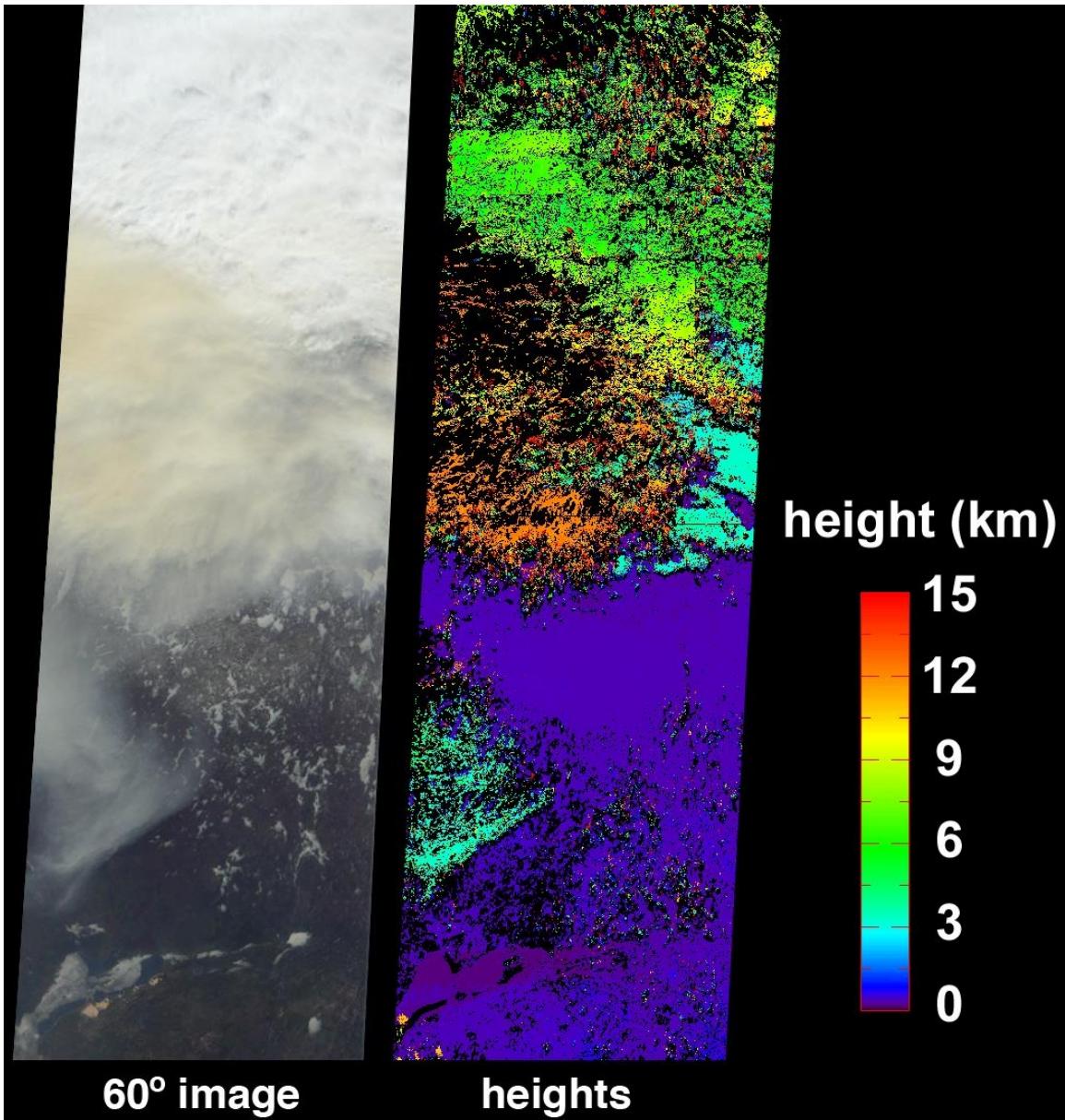


1

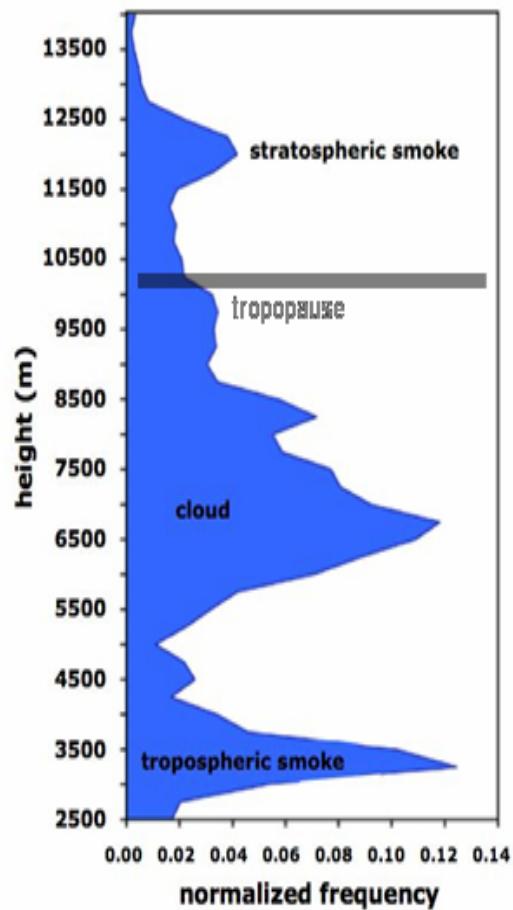
2

3 **Figure 4.** MODIS true color and 11 μ m BT at 1840 UTC 29 May, with boxes
4 discriminating 3 scenes for split-window BTD analysis. Scene (a) contains only
5 meteorological cloud. Scene (b) contains the smoke plume and surrounding
6 meteorological cloud. Scene (c) is restricted to the smoky core of the plume.

7



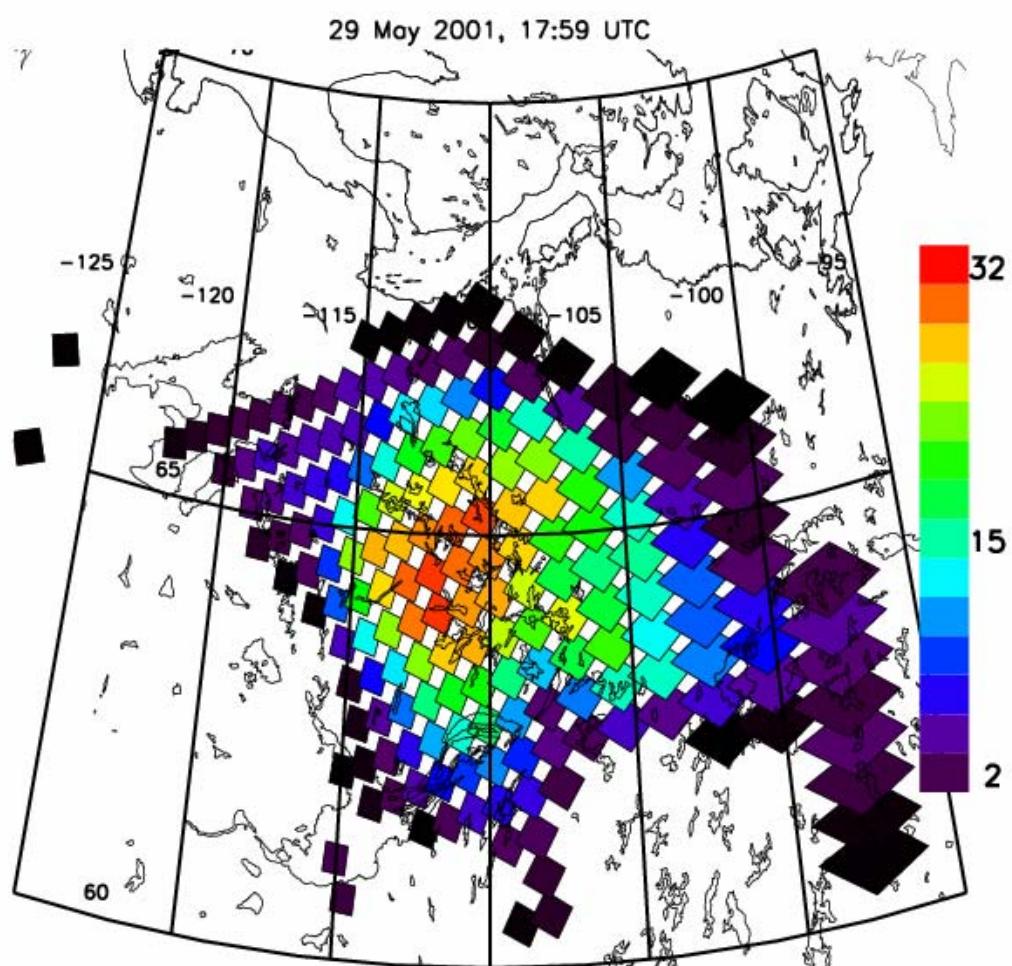
1


2

3 **Figure 5.** BTD analysis for 1840 UTC 29 May. Abscissa and ordinate ranges are
4 identical to 0510 UTC analysis in Figure 2. Panel (a) is for scene a of Figure 4. Panel (b)
5 has both scenes b (black dots) and c (red dots).

6

1
2
3 **Figure 6.** MISR true-color and stereo heights of 1840 UTC 29 May 2001 Chisholm
4 plume and meteorological cloud to the northeast. The true-color image is from the 60°
5 forward camera. The stereo heights are a special retrieval using MISR's 46° and 60°
6 forward-pointing cameras.
7

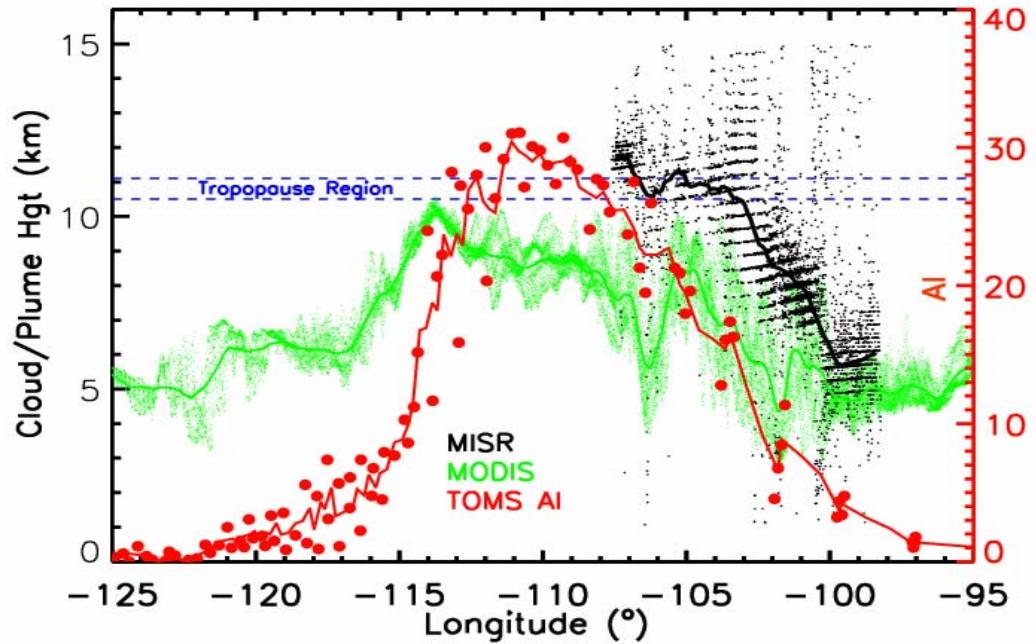


1

2

3 **Figure 7.** “Profile” of MISR stereo heights. This is a stereo-height frequency
4 distribution. Local maxima and the cloud/plume subscenes which they represent are
5 labeled. Tropopause height from Fort Smith (60°N, 110°W) radiosonde is marked by the
6 gray bar.

7

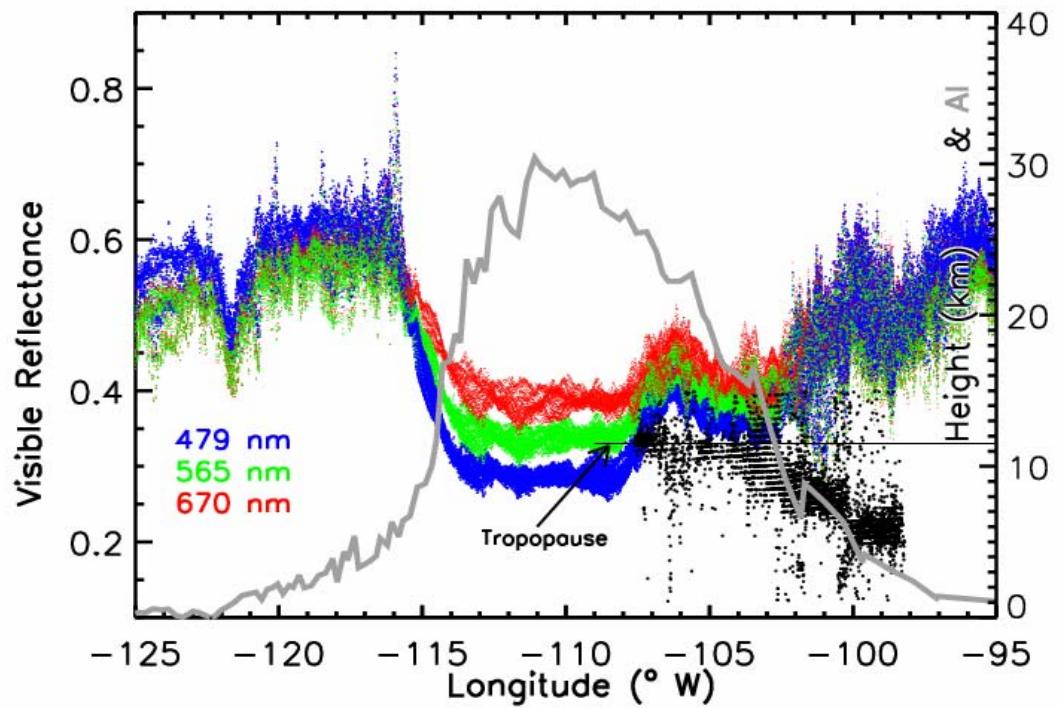


1

2

1 **Figure 8.** Earth-Probe TOMS level 2 aerosol index at ~18 UTC 29 May 2001.

2

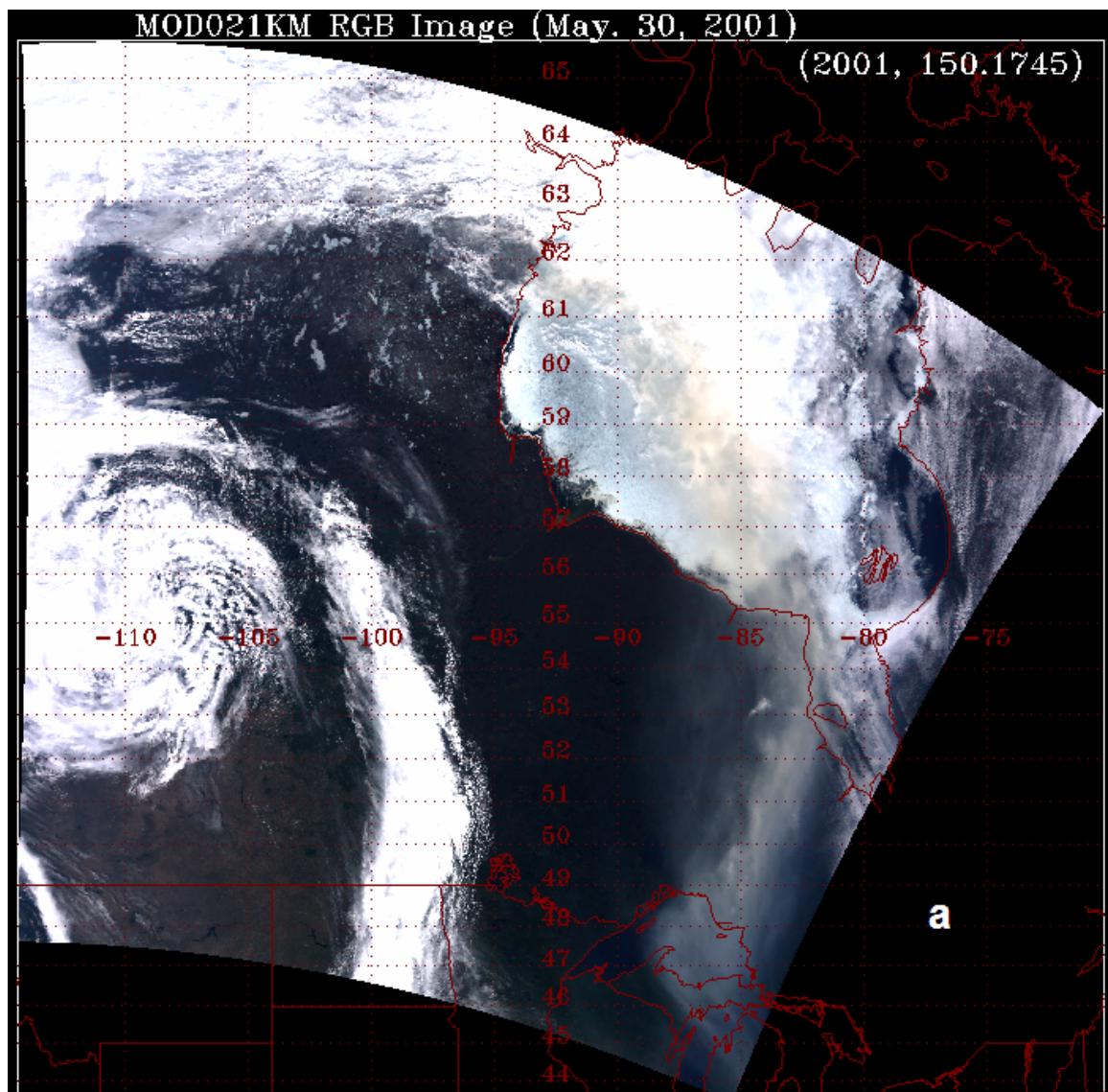


3

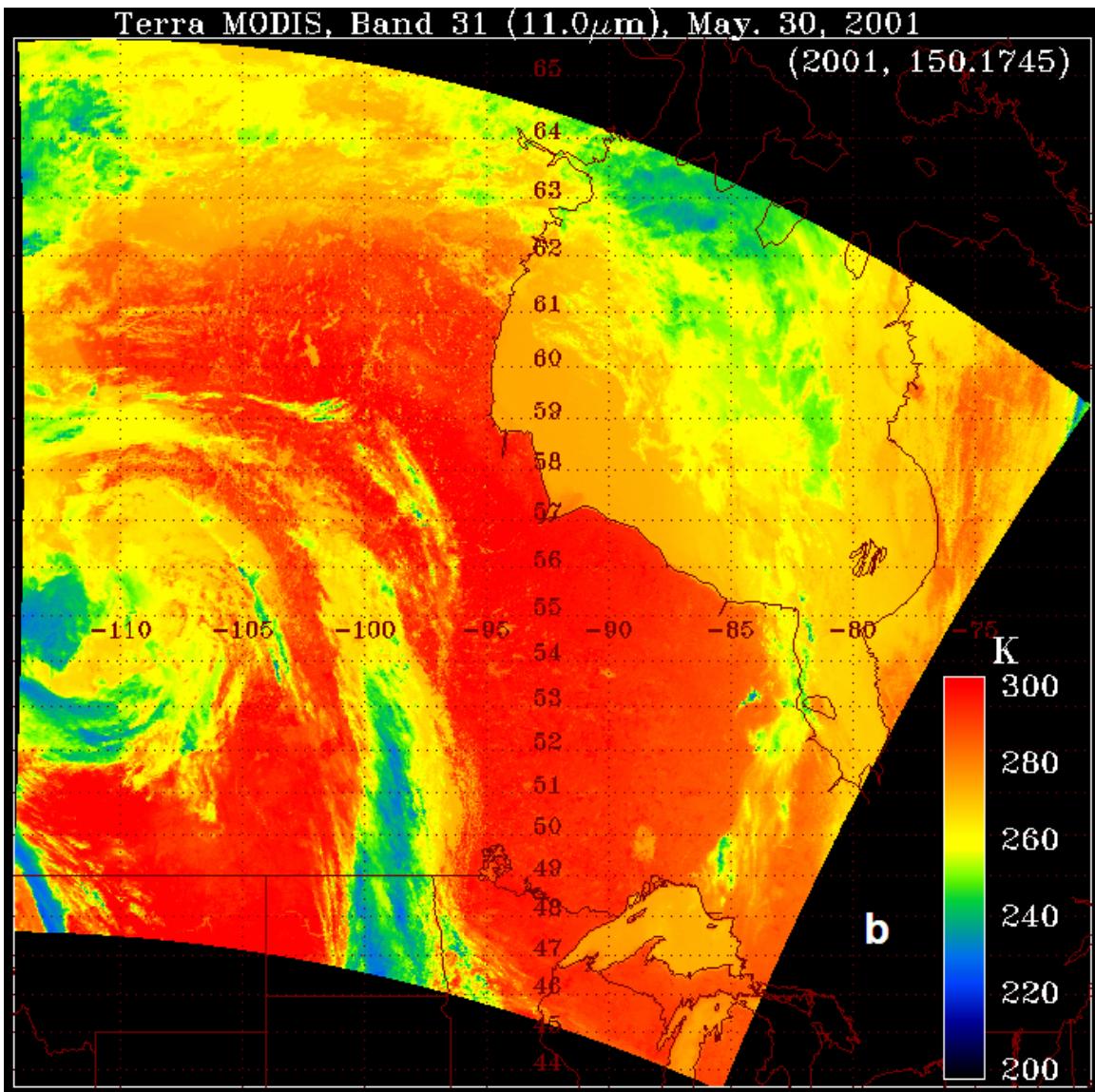
4

5 **Figure 9.** Analysis of MISR stereo heights, TOMS AI, and MODIS IR-inferred cloud
6 tops along the 65°N parallel. All pixels within 2° of 65°N are shown. For details of
7 MODIS BT-to-cloud-top altitude determination, see text. Lines through each data item
8 are from boxcar smoothing. For tropopause-region determination, see text.

9



1

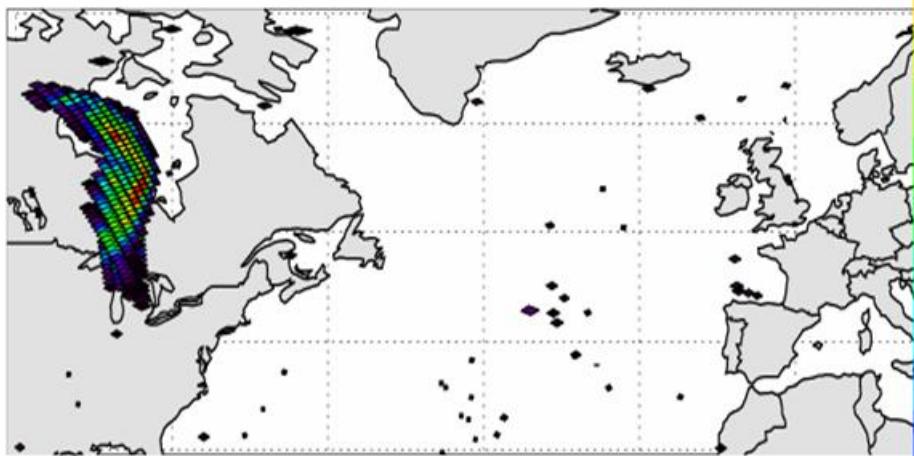

2

3 **Figure 10.** Analysis like in Figure 9, but with MODIS true-color-channel reflectances
4 instead of cloud-top. Each color channel is appropriately color coded.

5

1
2

1


2

3 **Figure 11.** MODIS stretched true color (a) and 11 μ m BT (b) images for 1745 UTC 30
4 May 2001.

5

May 30, 2001

23

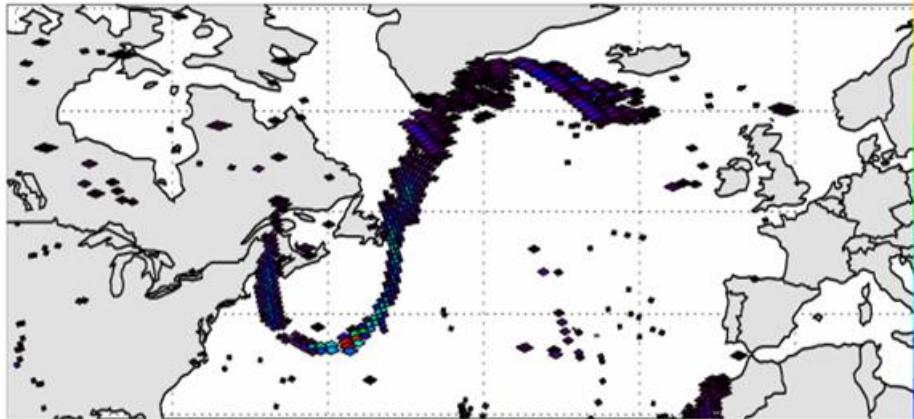
a

2

1

May 31, 2001

17

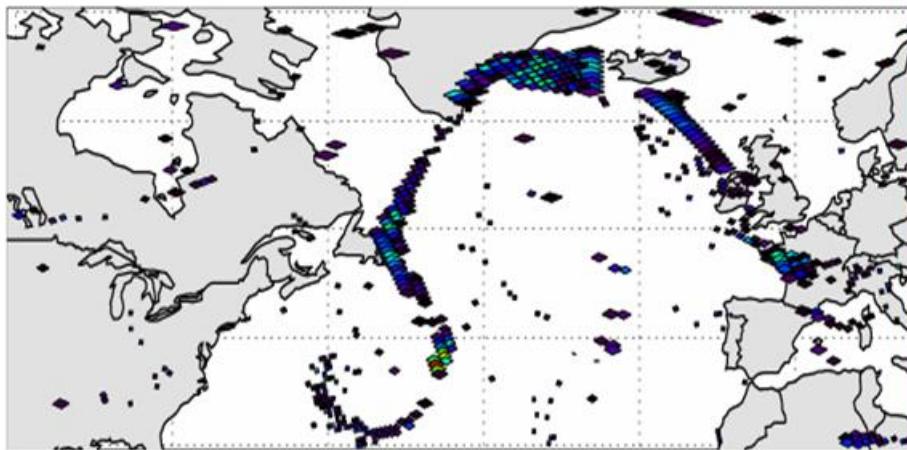

b

2

1

Jun 1, 2001

12

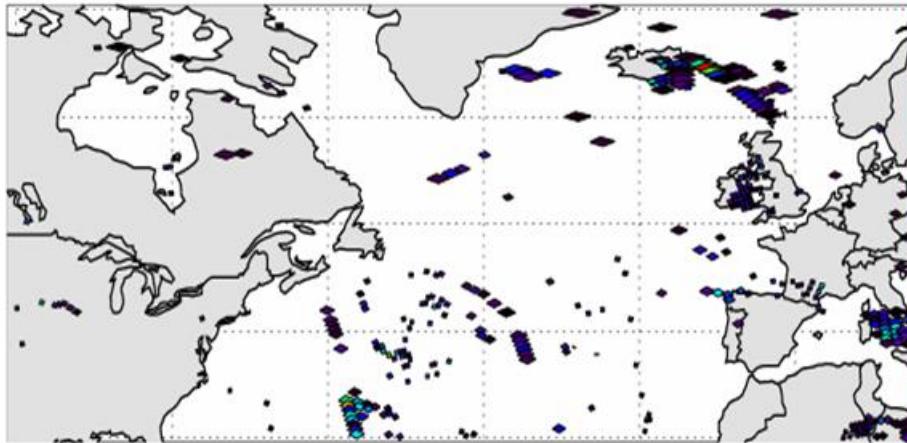

C

2

1

Jun 2, 2001

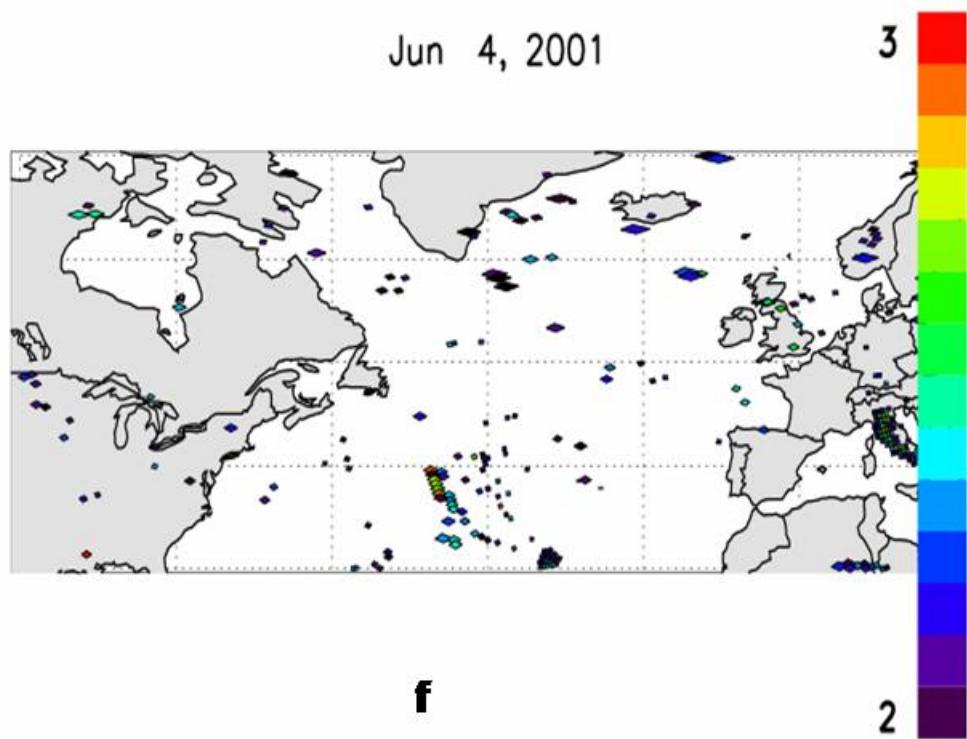
6


d

2

1

Jun 3, 2001


5

e

2

1

1

2 **Figure 12.** TOMS level 2 AI for 30 May – 4 June 2001 (a-f). Pixel rainbow color scaling
3 goes from AI=2 to the daily maximum.