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Abstract 

Annular Hurricanes are a subset of intense tropical cyclones that have been shown in previous 

work to be significantly stronger, to maintain their peak intensities longer, and to weaken more 

slowly, than average tropical cyclones.   Because of these characteristics, they represent a 

significant forecasting challenge.   This paper updates the list of annular hurricanes to encompass 

the years 1995-2006 in both the North Atlantic and eastern/central North Pacific tropical cyclone 

basins.  Because annular hurricanes have a unique appearance in infrared satellite imagery, and 

form in a specific set of environmental conditions, an objective real-time method to identify these 

hurricanes is developed.   However, since the occurrence of annular hurricanes is rare (~4% of all 

hurricanes), a special algorithm to detect annular hurricanes is developed that employs two steps to 

identify the candidates:   1) prescreening the data and 2) applying a linear discriminant analysis.  

This algorithm is trained using a dependent dataset (1995-2003) that includes eleven annular 

hurricanes.  The resulting algorithm is then independently tested using datasets from the years 

2004-2006, which contained an additional three annular hurricanes.  Results indicate that the 

algorithm is able to discriminate annular hurricanes from tropical cyclones with intensities greater 

than 84 kt (43.2 ms-1).   The probability of detection or hit rate produced by this scheme is shown to 

be ~96% with a false alarm rate of ~6%, based on 1363 6-hourly time periods with a tropical 

cyclone with an intensity greater than 84 kt (1995-2006).   
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1. INTRODUCTION  

 

A subset of tropical cyclones, referred to as Annular Hurricanes, were introduced and diagnosed in 

an observational study (Knaff et al. 2003, K03 throughout).  An Annular Hurricane (AH), as 

observed in infrared (IR) imagery, has a larger than average size eye, symmetrically distributed 

cold brightness temperatures associated with eyewall convection, and few or no rainband features.  

K03 used these features to subjectively identify six AHs in the Atlantic and eastern/central North 

Pacific tropical cyclone basins.   Findings of K03 show that AH formation was systematic, 

resulting from what appeared to be asymmetric mixing of eye and eyewall components of the 

storms that involved one or two possible mesovotices – a contention supported by limited aircraft 

reconnaissance data and satellite imagery.  AHs were also shown to exist and develop in specific 

environmental conditions that are characterized by 1) relatively weak easterly or southeasterly 

vertical wind shear, 2) easterly winds and colder than average temperatures at 200 hPa, 3) a 

specific range (25.4 – 28.5 C) of sea surface temperatures (SSTs) with small variations along the 

storm track, and 4) a lack of 200-hPa relative eddy flux convergence due to interactions with the 

environmental flow.  Weak easterly shear is hypothesized to promote the symmetric nature of AHs 

by canceling the effect of vertical wind shear induced by the vortex interacting with gradients of 

planetary vorticity.   With respect to maximum wind speed, AHs were significantly stronger, 

maintained their peak intensities longer, and weakened more slowly, than the average tropical 

cyclone in these basins (see Fig 3 in K03).  As a result, average official forecast intensity errors for 

these types of tropical cyclones were 10 – 30 % larger than the 5-y (1995-1999) mean official 
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errors during the same period with pronounced negative biases (e.g., -17.1 kt  for the 48-h forecast) 

.    

 

Since the formal documentation of AHs, also referred to as “truck tire” or “doughnut” tropical 

cyclones by some forecasters, there have been a few idealized numerical modeling studies that 

examine the combined effect of environmental and beta-vortex-induced shear or “beta shear”.  The 

beta shear results from the differential advection of planetary vorticity within the tropical cyclone 

with height and weakening of the beta gyres (Chan and Williams 1987; Fiorino and Elsberry 1989) 

as a result of the cyclone’s warm core structure (Wang and Holland 1996a, 1996b, 1996c; Bender 

1997; Peng et al. 1999; Wu and Braun 2004; Ritchie and Frank 2007).  The majority of previous 

idealized numerical studies of tropical cyclones were conducted on an f-plane, primarily to keep the 

influence of planetary vorticity and its influences on motion and vertical wind shear separate from 

other processes of interest.  In general, f-plane simulations result in quite symmetric simulated 

tropical cyclones in the absence of vertical wind shear, but the occurrence or development of AH-

type structures (i.e. symmetric with a large, temporally invariant radius of maximum winds) to our 

knowledge has not been explicitly reported or examined.  However, it has been established that 

rather small magnitudes (< ~3 ms-1) of vertical wind shear lead to convective asymmetries and 

corresponding weakening of the vortex in such simulations (e.g., Ritchie and Frank 2007).  

 

Recently, there has been renewed interest in the effect of the advection of planetary vorticity on the 

evolution of tropical cyclone structure.  The inclusion of these effects, in an environment at rest, 

has also produced a more asymmetric and slightly larger tropical cyclone that intensifies slightly 

slower than its f-plane counterpart in terms of minimum sea-level pressure (MSLP) (Ritchie and 
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Frank, 2007).   Wu and Braun (2004) produced similar results in tropical cyclone simulations 

where the inclusion of beta shear results in more asymmetries and a weaker tropical cyclone.   In 

another study Kwok and Chan (2005) found that uniform westerly steering flow in variable-f 

simulations partially cancels the beta shear, while easterly uniform steering flow enhances it – 

findings that confirm earlier results presented in Peng et al. (1999). The greater asymmetry in TC 

structure in these TC simulations is in a large part due to the vertical wind shear variations that 

result from the inclusion of the planetary vorticity advection.  Simulations of tropical cyclones 

using environmental conditions similar to those documented in K03 have also been shown to result 

in a more axisymmetric tropical cyclone (Ritchie 2004).  One can interpret these results as 

implying that beta shear in these simulations produces greater TC asymmetries and if the 

environmental wind shear opposes the beta shear these asymmetries are reduced.   Furthermore, if 

the environmental conditions nearly cancel the beta shear the TC can be axisymmetric which 

supports the suggestions made in K03 that annular hurricanes form in environments where the 

environmental vertical wind shear nearly cancels the beta shear and further intensification is 

limited by less than ideal thermodynamic conditions (i.e., atypically low SSTs conditions).   

 

AHs are intense tropical cyclones with average intensities greater than 100 kt (or 51 ms-1) – major 

hurricanes and, despite their less than optimal thermodynamic conditions (i.e., SSTs ≤ ~28.5 oC), 

maintain intensities close to their maximum potential intensity with respect to SST (e.g., DeMaria 

and Kaplan 1994a and Whitney and Hobgood 1997).  Because of this intensity change behavior, 

intensities of past AHs have been consistently underforecasted.  The mean intensity of AHs makes 

them potentially high-impact events when they affect coastal areas.  Objective identification of 

AHs in an operational setting could help forecasters better predict future intensity changes for these 
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tropical cyclones, and likely reduce overall intensity forecast errors.  This could be accomplished 

by subjectively forecasting slower weakening or no weakening while AH conditions exist.  K03 

recognized the need for better identification of AHs and suggested methods that used 

environmental conditions and IR imagery separately to identify, in a dependent manner, the six 

AHs that occurred in the Atlantic and eastern/central North Pacific during 1995-1999.  This paper 

expands on those ideas and the results of recent modeling studies to create a method to objectively 

identify AHs.  This objective method, which uses information about the storm’s environmental 

conditions, intensity, and appearance in IR satellite imagery, is described in the following sections.   

 

 

2. DATA AND APPROACH  

 

In K03 the developmental data for the Statistical Hurricane Intensity Prediction Scheme (SHIPS; 

DeMaria and Kaplan 1994b, 1999; DeMaria et al. 2005) were used to determine the environmental 

conditions associated with AHs.  Following the logic of K03, the SHIPS developmental data (SDD) 

is used in a similar way in this study, but the calculations used to create the SDD have continued to 

evolve. The largest changes to the SDD involve how vertical wind shear was calculated.  The 

vertical shear calculation used in K03 was averaged in a circular area within a radius of 600 km 

following a Laplacian filtering procedure that was used to remove the effects of the TC vortex as 

described in DeMaria and Kaplan (1999).  In the current version of SDD, no attempt is made to 

remove the storm vortex and an annular average (200 km to 800 km) is used to estimate 

environmental vertical wind shear.  The current SDD also uses the NCEP/NCAR re-analyses 

(Kalnay and Coauthors 1997) prior to 2001 and the NCEP Global Forecast System (GFS; Lord 
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1993) analyses thereafter.  SST estimates are still estimated from Reynolds (1988) weekly SST 

fields.  Position of the tropical cyclone and its intensity come from the National Hurricane Center 

(NHC) best track (Jarvinen et al. 1984).  Note that because tropical cyclone intensity is reported 

and archived in units of knots (kt; 1 kt = 0.51 ms-1), this unit will be used for intensity throughout 

this manuscript.  Because of these changes, the latest version of the SDD (see, DeMaria et al. 2005) 

at 6 hourly intervals for 1995-2006 is used for this study, where the period 1995-2003 is used as 

dependent dataset and 2004-2006 are retained for independent testing.  

 

In addition to the SDD, Geostationary Operational Environmental Satellite (GOES) IR imagery 

with wavelengths centered near 10.7μm is used in the form of 4-km Mercator projections during 

the period 1995-2006. The GOES IR imagery is taken from the CIRA Tropical Cyclone IR Archive 

(Mueller et al. 2006; Kossin et al. 2007).  Individual images were re-navigated to storm-centric 

coordinates using cubic-spline interpolated best track positions (Kossin 2002). The time interval 

between images is generally 30 minutes, with the exception of the satellite “eclipse” periods 

occurring within approximately a month of the autumnal equinox and last 1-3 hours. In this study 

IR brightness temperature (TB) is azimuthally averaged about the storm center and time averaged 

over a 6-hour time period, corresponding to the 6 hours prior to the analysis time.  This time 

interval corresponds to the times in the NHC best track and the times in SDD. Figure 1 shows an IR 

image of eastern North Pacific Hurricane Daniel on 27 July 2001 at 22 UTC, and the corresponding 

radial profiles azimuthal mean and standard deviation of TB.  Some of the characteristics of annular 

hurricanes can be quantified directly from these data (e.g., the existence of large warm eye features 

or the relative lack of rainband activity).  
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Changes in how environmental conditions have been calculated in the updated SDD require that the 

statistics of the environmental conditions associated with the original six AHs be recalculated.  

Using the most recent SDD and the IR image archive, statistics of key environmental conditions 

and IR imagery characteristics associated with the six AHs described in K03 are shown in Table 1.  

Thirty-six 6-hour time periods make up each average. The average quantities calculated from the 

IR imagery and shown in Table 1 include the radius of coldest azimuthally averaged TB (Rc) as 

illustrated in Fig. 1, the azimuthal standard deviation at Rc (σc) also shown in Fig 1, the variance of 

the azimuthally averaged temperatures from the TC center to 600km (VAR), and maximum 

difference between Rc and any azimuthally averaged temperature at smaller radii (ΔTeye).   Table 1 

also includes the statistics associated with the SSTs interpolated to the TC center (SST), the 

magnitude of the 200-hPa to 850-hPa wind shear vector (SHRD), the magnitude of the 500-hPa to 

850-hPa wind shear (SHRS) vector, the zonal wind component at 200hPa (U200), the temperature 

at 200hPa (T200), the relative eddy flux convergence (REFC; see K03), and the best track value of 

maximum wind speed (Vmax).  The SHRD, SHRS, U200 and T200 parameters were calculated in a 

200 to 800 km annulus centered on the TC and the REFC was calculated within 600km of the TC 

center as described in DeMaria et al. (2005).    These statistics are consistent with the 

environmental and visual characteristics of Annular Hurricanes (i.e., K03, Table 3 and Figure 7).  

Small differences do occur due to the differences in how the SDD parameters are calculated, and 

the use of 6-h vs. the 12-h time averaging periods used in K03.     These new statistics are used as a 

starting point to develop an objective identification technique discussed in the next section. 

 

Since the publication of K03, a few more annular cases have occurred in the Atlantic and eastern 

North Pacific.   There has also been an opportunity to examine some IR imagery prior to 1997 in 
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the East Pacific.  The expanded list of subjectively identified AHs for the period 1995-2006 is 

shown in Table 2.  Eight cases, several short-lived (i.e., Erin (2001), Kate (2003), and Frances 

(2004) in the Atlantic, and Daniel (2000) and Bud (2006) in the East Pacific) were added to the list.  

However since 2000 there have been a couple of exceptional AH cases.  Both Hurricane Isabel 

(2003) and Daniel (2006) were both spectacular examples of AHs.  Hurricane Isabel had four 

distinct periods with AH characteristics, each following a rearrangement of the eye and Hurricane 

Daniel (2006) exhibited classic AH formation with eye-to-eyewall mixing, indicated by one or 

more mesovortices seen in the IR imagery, followed by the formation of a large warm eye and 

diminished rainband activity that lasted over 30 hours. 

 

The GOES IR satellite imagery associated with these fourteen subjectively identified AH cases 

1995-2006 (Fig. 2) shows a large variety of sizes. The Atlantic AHs (yellow text), in general, 

appear larger than the eastern/central North Pacific AHs (cyan text).   In fact, the average 34-kt 

wind radius is 109 n mi (202 km) and 135n mi (250 km) for the eastern/central North Pacific and 

Atlantic cases, respectively.   This result is consistent with the tropical cyclone size climatology of 

these basins (Knaff et al. 2007) and cyclone sizes reported in Knaff and Zehr (2007), where 25 n mi 

(46 km) separate the average 34-kt wind radius between the East Pacific and Atlantic basins.  One 

could speculate that environmental conditions in the eastern/central North Pacific are less 

conducive for TC growth because upper-level trough interaction, and extra tropical transition, both 

related to TC growth (Maclay  2006; Maclay et al. 2007), occur less frequently in that basin.   The 

average AH intensity is 110 kt (56.6 ms-1) and ranged from a low of 90 kt (46 ms-1) to a high of 140 

kt (72 ms-1).  From the subjectively determined time periods in Table 2, the average duration of an 

AH is approximately 18 hours with a maximum of 57 hours associated with Hurricane Howard in 



 

 

10

10

1999.  There also appears to be a preferred climatological time for formation.  Eastern/central 

North Pacific AHs tend to form from mid-July to late-August whereas Atlantic AH occurrence 

seems to be mid-August to mid-October.  Figure 3 shows the tracks associated with the fourteen 

AHs listed in Table 2.  These storms are not typically a threat to the US mainland, but rather may 

be more of a concern for the Windward, Leeward and Hawaiian Islands.  There appears to be a 

preferred location near 15 N and 125 W in the eastern North Pacific while Atlantic AHs show 

greater variability in their locations.   It is also important to note that the inclusion of the new cases 

does not change the findings of K03 related to AH intensity behavior.  AHs were still found to be 

significantly stronger, maintained their peak intensities longer, and weakened more slowly, than the 

average of all hurricanes. 

 

3. ALGORITHM DEVELOPMENT  

 

As described in K03, AHs occur in specific environmental conditions, characterized by a 

combination of weak easterly or southeasterly vertical wind shear in deep layer mean easterlies and 

relatively cold temperatures at 200 hPa, moderate SST, and relatively small 200-hPa relative eddy 

flux convergence (REFC) due to environmental interactions.  AHs also appear distinctly more 

axisymmetric in IR satellite imagery with large circular eyes surrounded by a nearly uniform ring 

of convection and a relative lack of deep convective features, including rainbands outside that ring.   

From results presented in K03, it also appears that the environmental conditions can be combined 

with the IR satellite imagery-derived characteristics of AHs to separate the population of annular 

hurricanes from the larger population of non-annular hurricanes.  At first glance this process would 
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seem straight forward, but AHs are also rare events that occur in less than 4% of all hurricane 

cases, which makes many standard statistical identification algorithms impractical. 

 

To find the relatively rare occurrence of AHs in the combined Atlantic and eastern/central North 

Pacific TC sample, a two-step algorithm is developed.  The first step is to prescreen the SDD and 

IR satellite data for cases when the environmental conditions and IR satellite TB distribution are 

unfavorable for AHs.   The second step is to apply a statistical technique called linear discriminant 

analysis (LDA; see Wilks 2006) to the SSD and IR satellite dataset that remains after the screening 

step.  LDA is a formal technique that discriminates between two or more populations using linear 

combinations of a set of discriminators.  To test the ability of this two-step algorithm to 

discriminate events from non-events we use the hit rate and the false alarm rate (Mason and 

Graham 1999).  The hit rate is the number of correctly identified AH cases divided by the number 

of AHs observed and the false alarm rate is the number of incorrectly identified AH cases divided 

by the total number of Non-Annular Hurricane (NAH) cases observed, which for this study 

includes all storms that passed the screening and were not AHs. One caveat to this study is that the 

subjectively identified AH cases are used to develop and then independently test this objective 

technique, which is far from ideal and will likely degrade the final algorithm (Section 4).      

 

For the screening step, a set of “selection” rules are determined to eliminate cases where AHs are 

very unlikely to occur given the environmental conditions and IR characteristics. These criteria are 

listed in Table 3.  To be as inclusive as possible, the environmental discriminators were set to 

values that capture the 54 six-hourly time periods associated with the eleven AHs that occurred 

1995-2003.   The threshold for storm intensity, ΔTeye and Rc , which are far from normally 
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distributed, are set to values slightly less than the minimums of the AH sample. The SST is used as 

another criterion to eliminate NAH cases since AHs are observed to occur in a distinct range of 

SST values.  The SST thresholds are based on the mean ± three standard deviations of the annular 

group sample. The selection rules were applied to the original data sample (1995-2003) that 

contained 976 6-hourly tropical cyclone cases with intensities greater than 84 kt. After the selection 

rules were applied, there were 241 remaining 6-hourly cases of which 53 were objectively 

identified and subjectively confirmed as being AHs (1-case was missing quality IR satellite 

imagery). Thus the prescreening of the dependent dataset had a 100% hit rate, but a false alarm rate 

of 19%, given the 972 cases that passed the screening.     Using LDA we hope to improve the false 

alarm rate. 

 

LDA is then used to take advantage of differences between the AH and NAH samples. From the 

1995-2003 cases, the environmental factors that had significant annular vs. non-annular differences 

were used as discriminators in the LDA.   Results show that an environment characterized by  

lower SSTs and easterly zonal 200-hPa and IR imagery depicting warm eyes,  a radius of the 

coldest pixel (i.e. inner core convection) with  little azimuthal variability and a less variable radial 

profile of brightness temperatures (i.e. fewer rainbands) form the basis for discriminating AH from 

NAHs in the screened sample.  The environmental discriminators therefore are 1) SST and 2) 

U200.  Similarly, the IR-based discriminators used are 1) σc, 2) VAR, and 3) ΔTeye.  All of the 

above discriminators were chosen based on statistical significance (i.e., exceeding the 95% 

significance level using a two-tailed Student’s-t Test) between the sample data means of the AH 

and NAH cases that passed the prescreening process. The storm cases chosen to belong to the 
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group of AHs in the LDA development are the eleven cases with 53 six-hourly periods subjectively 

determined to be AHs listed in Table 1 for the period 1995-2003.  

 

The prescreened data have been normalized prior to carrying out the LDA by subtracting the 

sample mean and then dividing by the sample standard deviation for each discriminator. 

Standardizing the input data allows one to estimate the relative importance of each parameter in the 

LDA.   LDA then provides the normalized weights for the linear combination of the input variables 

that best differentiates between AH and NAH cases.  Table 4 shows the normalized discriminant 

weights produced by the LDA.  Also shown in Table 4 are the means and standard deviations 

associated with the parameter calculated from the 241 prescreened cases, which are used for 

parameter normalization.  When the discriminant vector is applied, positive values are indicative of 

AHs.  Noting that the prescreening requires a large eye and a low vertical shear environment, Table 

4 indicates that the largest contribution to the discrimination comes from the factors associated with 

SST, and VAR (i.e., variance of the radial profile of azimuthal mean brightness temperatures), 

which is a measure of significant rainband activity.   

 

The linear combination of the normalized discriminator weights and the standardized input 

variables for both AH and NAH cases are then calculated to determine the value of the discriminant 

function at each analysis time. Although the LDA is designed to produce a “YES/NO” answer, the 

range of values of the discriminate function performed on the dependent data sample allows us to 

assign a normalized annular hurricane index value to each case. The relative magnitude of the 

discriminant value is an indicator of how “annular” a particular case is.    
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The results from the linear discriminant function, however, are not perfect and misidentified 56 of 

188 NAH cases as being annular and 7 of the 53 AH cases as being NAH.     Using the dependent 

sample and combining the two steps (i.e., prescreening and LDA) shows that the algorithm 

identified 46 of the 53 6-h periods when AH existed and had a hit rate of 87%, while only falsely 

identifying 56 cases as AH out of 923 84-kt or greater 6-hourly NAH cases resulting in a false 

alarm rate of ~6%.  The seven false negatives occurred with 1) short-lived annular hurricanes (Luis 

1995, Erin 2001, Kate 2003), which accounted for 4 cases, and 2) cases associated the first six-hour 

period in the annular phase.  These false negative cases had an average discriminant value of 0.39 

and only one case (Beatriz) had a value greater than 1.25, which was due to the rapid evolution of 

Beatriz and the time averaging applied to the IR TB data.  Most of the false positives were 

associated with AHs but at times before or after their subjectively determined annular phase(s).  

The average of the discriminant value for these fifty-six cases was -0.76.  Other false positives that 

were never AHs include East Pacific Hurricanes Felicia (1997), Guillermo (1997), Georgette 

(1998),Adolf (2001), Hernan (2002) and Jimena (2003) with 2, 1, 3, 1, 2, and 2 six-hourly time 

periods misidentified,  respectively.   Similarly Atlantic Hurricanes Georges (1998), Alberto 

(2000), Isidore (2000) and Fabian (2003) had 2, 1, 1,  and 1 six-hourly time periods that were 

misidentified, respectively.   Figure 4 shows the cumulative probability diagrams for the AH and 

NAH cases as a function of the discriminant value, which shows the LDA properly discriminating 

the majority of the cases with a larger probability of false identification than of false alarm rate.  

For the final algorithm (Section 4) it will be desirable to maximize the hit rate while minimizing 

the false alarms through scaling of the discriminant function values using information in such 

diagrams.   
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It is interesting to examine what the LDA is actually discriminating.  To briefly show what the 

LDA algorithm determines as an AH case vs. a NAH case, four time periods of Hurricane Isabel 

with varying degrees of AH characteristics are examined.  Figure 5 shows IR imagery of Hurricane 

Isabel and corresponding discriminant value on 11 September 345 UTC, 12 September 1145 UTC, 

14 September 0345 UTC and 18 September 1145 UTC.  The 345 UTC time is the last image used 

for the annular index estimation at 600 UTC due to satellite eclipse times1.  Notice that as Isabel 

changes from an asymmetric hurricane on the 11th to an AH on the 12th, the discriminant value goes 

from negative to positive.  On the 14th at 0345 UTC following a separate annular period on the 13th  

through early on the 14th (not shown), the storm displays a distinct banding structure in the 

enhanced temperatures that wraps around the storm, instead of a more continuous ring of nearly 

constant temperatures, and thus is a NAH.  The image on the 18th shows an example of an extreme 

NAH case.  For these four images the environment is also varying which also contributes to the 

estimate of the discriminant value.   The 200-hPa zonal winds were -6.7, -3.0, 0.7, and -1.5 ms-1 

and the SSTs were 28.4, 28.2, 28.4 and 27.5 oC, in these images respectively.  During the period 

between the 11 September through the 18th the algorithm properly (improperly) identified 8 (8) of 

the AH periods and 12 (0) of the NAH periods as Isabel went through four separate 12-14-hour 

subjectively identified AH periods.    

 

In summary, an algorithm to detect AHs is created using a two step process.  The first step is to 

prescreen the data using known environmental and storm scale factors that are indicative of AHs.  

This step reduces the sample from 976 hurricane 6-hourly cases that have intensities greater than or 

equal to 85 kt to 241 cases that could be AHs.  The second step is to create a LDA algorithm to 

                                                 
1 Note that some recently launched operational geostationary satellites (i.e., GOES-13, Meteosat-8, and Meteosate-9) 
operate through the eclipse periods. 
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identify AHs using the period 1995-2003, using those remaining 241 6-hourly cases.  The output of 

the LDA, the discriminator function is an objective measure of whether a storm is or is not an AH 

and how “annular” a particular case is.  This two-step algorithm is illustrated schematically in 

Figure 6 and is applied to independent data and tested in the next section. 

 

 

 

4. INDEPENDENT TESTING AND FINAL ALGORITHM 

 

The algorithm discussed in the previous section is tested using independent datasets collected 

2004-2006.  This involves applying the LDA coefficients shown in Table 4 to the SDD and IR 

satellite imagery during those seasons, to objectively identify the AH periods shown in Table 2.    

During the years 2004-2006 there were 2424 total 6-hourly cases of which 387 had intensities 

greater than 84 kt and 82 passed the prescreening process.  Of these remaining 82 cases, 21 cases 

were objectively identified as AHs and 61 cases were identified as NAHs.  Of the objectively 

identified AH cases, 7 were associated with times listed in Table 2.  Of the subjectively identified 

times 7 out 7 were properly identified, leaving 14 false positive cases.  Of the 14 false positive 6-

hourly cases only three were associated with Hurricane Jova of 2005 that never became an AH. The 

result of the three-year independent test is that the two-step objective AH identification scheme 

identified 100% of of the AH cases with a false alarm rate of ~ 4%, noting that there were 380 

NAHs. 
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The results of the independent and dependent testing of the two-step objective AH identification 

scheme show that AHs can be identified objectively and in a real-time manner.   With a goal of 

creating a real-time AH identification index, the next step is to use the entire dataset to estimate a 

final set of LDA coefficients.   There were 1363 6-hourly cases that had intensities greater than 84 

kt and screening produced 323 cases for the LDA.  Table 5 shows the normalized parameter 

weights determined by the LDA, and the means and standard deviations of the 323 screened cases 

in the 12-year sample (1995-2006).  Comparing Table 4 and Table 5, the addition of the 2004-2006 

cases has changed the weights in such a way that all the variables except VAR have a larger 

influence on the discriminant function.   

 

To more easily interpret the discriminant function, the discriminant values for annular hurricanes 

are scaled from 0 to 100 so that a value of zero indicates the answer “not an AH”, a value of 1 

indicates the possibility of a AH with the least likelihood, and a value of 100 indicates an AH with 

the greatest likelihood.  Discriminant values of -0.3 and 2.3 correspond to scaled index values of 1 

and 100 respectively and scaled index values are also set to zero and to 100 for discriminant 

function values less than (greater than) than -0.3 and 2.3, respectively.  These values represent an 

objective degree of AH characteristics that are satisfied and should not be attributed to a 

probability.  These threshold values were chosen to maximize the hit rate and minimize the false 

alarm rate based on information contained in the cumulative probability distributions of the 

dependent discriminant function values for the years 1995-2006.   These values correspond to ~ 

96% hit rate and ~6% false alarm rate in the developmental data, considering there are 1363 

possible cases.   Many (~47%) of the false alarm cases were associated with storms that either were 

becoming AHs or had recently been AHs.  
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5. SUMMARY AND FUTURE PLANS 

 

AHs are intense tropical cyclones with average intensities of approximately 110 kt and are 

potentially high-impact events when affecting coastal areas. With respect to intensity, AHs also are 

significantly stronger, maintain their peak intensities longer, and weaken more slowly, than the 

average tropical cyclone.  As a result, average official forecast intensity errors for these types of 

tropical cyclones were 10 – 30 % larger than the 5-year (1995-1999) mean official errors during the 

same period.  While forecast errors associated with AHs have improved since 1999, under 

forecasting intensity (i.e., too rapidly forecasting weakening) of these systems is still common.  For 

these reasons, the identification of AHs in an operational setting could help improve tropical 

cyclone intensity forecasts by alerting forecasters that slower than average weakening of the current 

TC  is likely to occur, especially if environmental conditions are forecast to remain fairly constant.  

Fortunately, the climatological distribution of AH suggests that they are more likely in the tropics 

and well away from the US Mainland and may be more of a threat to the Windward, Leeward and 

Hawaiian Islands, however there is evidence that one case that is not included in this study, 

Hurricane Hugo, that made landfall near Charleston, SC in 1989, may have been an AH just before 

it went inland.  Datasets to examine the Hurricane Hugo (1989) case are currently being collected. 

 

This paper uses the information contained within Knaff et al (2003) and new knowledge about the 

structure of AHs gained from both idealized numerical simulations and new observations of 

tropical cyclones, to create an objective method to identify AHs.  The objective method uses 
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information about the storm’s environmental conditions, intensity, and appearance in IR satellite 

imagery via a two step algorithm (See Fig. 6).  The first step, prescreening, removes all cases that 

do not have the intensity and environmental characteristics associated with tropical cyclones.  If the 

case passes the prescreening, it is then passed to a linear discriminant function, which uses five 

factors to estimate the degree that case is annular.  To go one step further the resulting linear 

discriminant value is then scaled from 0 to 100, where 0 indicates “not an annular hurricane” and 

values 1 to 100 indicate that the case is likely an AH, with larger values indicating greater 

confidence. 

 

The algorithm described here will be tested in a real-time operational setting at the National 

Hurricane Center during the 2007 hurricane season.  Following the season the results of the test 

will be evaluated.   If the evaluation of the algorithm is favorable, the transition of this algorithm 

from experimental technique to operational product will be pursued.   

 

Once the algorithm has been tested and the results shown here verified there are several research 

and product development studies that are possible.  Using past AH hurricane cases an objective 

correction to the SHIPS and Statistical Typhoon Intensity Prediction Scheme (Knaff et al. 2005) 

intensity forecast models can be developed.  Also, since AHs do exist in other basins [e.g., 

Typhoon Jelawat (2000) and Typhoon Saomai (2006) in the western North Pacific and Tropical 

Cyclone Dora (2007) in the South Indian Ocean], IR satellite imagery of tropical cyclones (e.g., 

Knapp and Kossin 2007) and high quality reanalysis datasets could be used to objectively identify 

and document the climatology of AHs globally.  Finally, since the environmental conditions of 

AHs, save the SST conditions,  are also conducive for very strong tropical cyclones, research could 
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be pursued to identify not only AHs but also those tropical cyclones that are likely to form 

secondary eyewalls, which is also a forecast problem.  Secondary eyewall formation will more 

heavily utilize microwave imagery from low earth orbiting satellites to identify those time periods 

and storms that experience such events. This research has begun and results will be reported  in due 

course.   
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Figure Captions. 

 

Figure 1. Storm centered IR image of East Pacific Hurricane Daniel at 2200 UTC 27 July 2000 

(left) and corresponding radial profiles of azimuthally averaged brightness temperatures with an 

arrow pointing to the radius of coldest average brightness temperature indicated as Rc(top right) 

and azimuthal standard deviations with an arrow pointing to the value of the standard deviation at 

Rc and identified as σc (bottom right).  The yellow circle centered on the image has a radius of 

300km for reference. 

 

 

Figure 2. Color enhanced GOES infrared satellite imagery of the fourteen annular hurricane cases 

at or near peak visual annular characteristics.   Storm names, dates and times are given at the 

bottom of each individual image panel.  In addition, storm names and year are listed in the upper 

left of each image panel with North Atlantic and eastern/central North Pacific storm names 

indicated by yellow and cyan text, respectively.    

 

Figure 3.  Map of the tracks of the fourteen annular hurricane cases used in this study. The time 

periods when these hurricanes were subjectively identified to be annular hurricanes are indicated by 

the thick black portion of the track.   

 

Figure 4.  The cumulative probability distributions associated with the dependent data (1995-2003) 

as a function of binned discriminant function values created by the linear discriminant analysis.  
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The dashed line is for the Non-Annular Hurricane (NAH) cases and the solid line is for the Annular 

Hurricane (AH) cases. 

 

Figure 5.  Examples of GOES infrared satellite imagery of Hurricane Isabel (2003) and 

corresponding discriminant function values (dv) shown in the upper center of each panel.  Results 

are based upon dependent data and negative values of dv discriminate annular hurricane cases.  

Imagery times are 11 September 0345 UTC (top left), 12 September 1145 UTC (top right), 14 

September 0345 UTC (bottom left) and 18 September 1145 UTC (bottom right) and are also shown 

at the bottom of each panel. 

 

Figure 6.  Schematic of the two step procedure used to objectively identify Annular Hurricanes. 



 

 

26

26

 

Table Captions. 

 

Table 1.   Statistics of the important environmental conditions and IR imagery-derived 

characteristics related to Annular Hurricanes. Statistics are shown for the radius of coldest 

azimuthally averaged TB (Rc), the azimuthal standard deviation at Rc (σc), the variance of the 

azimuthally averaged temperatures from the TC center to 600km (VAR), the maximum difference 

between Rc and any azimuthally averaged temperature at smaller radii (ΔTeye), the SSTs 

interpolated to the TC center (SST), the magnitude of the 200-hPa to 850-hPa wind shear vector 

(SHRD), the magnitude of the 500-hPa to 850-hPa wind shear (SHRS) vector, the zonal wind 

component at 200hPa (U200), the temperature at 200hPa (T200), the relative eddy flux 

convergence (REFC), and the best track value of maximum wind speed (Vmax). 

 

Table 2.   List of the fourteen AH cases identified in the Atlantic and East Pacific Hurricane basins 

(1995-2006).  Listed are the storm, basin, the times associated with the AH phase, the number of 

hours for each AH phase lasted, and the intensity range associated with the storm. 

 

Table 3. Summary of selection rules used to prescreen the input data and remove cases when an 

AH event is unlikely. Valid ranges are given for the radius of coldest azimuthally averaged TB (Rc), 

the maximum difference between Rc and any azimuthally averaged temperature at smaller radii 

(ΔTeye), the magnitude of the 200-hPa to 850-hPa wind shear vector (SHRD), the zonal wind 

component at 200hPa (U200), the relative eddy flux convergence (REFC), and the best track value 

of maximum wind speed (Vmax). 
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Table 4.  Normalized coefficients of the Annular Hurricane discriminant vector based upon the 

1995-2002 AH cases.   Statistics are given for the azimuthal standard deviation at Rc (σc), the 

variance of the azimuthally averaged temperatures from the TC center to 600km (VAR), the 

maximum difference between Rc and any azimuthally averaged temperature at smaller radii (ΔTeye), 

the magnitude of the 200-hPa to 850-hPa wind shear vector (SHRD), and the SSTs interpolated to 

the TC center (SST).  Note the discriminant divider is unit less number that causes the discriminant 

function values to be centered about a zero value. 

 

Table 5.  Normalized coefficients of the Annular Hurricane discriminant vector based upon the 

1995-2006 AH cases.   Statistics are given for the azimuthal standard deviation at Rc (σc), the 

variance of the azimuthally averaged temperatures from the TC center to 600km (VAR), the 

maximum difference between Rc and any azimuthally averaged temperature at smaller radii (ΔTeye), 

the magnitude of the 200-hPa to 850-hPa wind shear vector (SHRD), and the SSTs interpolated to 

the TC center (SST).  Note the discriminant divider is unit less number that causes the discriminant 

function values to be centered about a zero value. 

 

 



 

 

28

28

 

 

Figure 1. Storm centered IR image of East Pacific Hurricane Daniel at 2200 UTC 27 July 2000 
(left) and corresponding radial profiles of azimuthally averaged brightness temperatures with an 
arrow pointing to the radius of coldest average brightness temperature indicated as Rc(top right) 
and azimuthal standard deviations with an arrow pointing to the value of the standard deviation at 
Rc and identified as σc (bottom right).  The yellow circle centered on the image has a radius of 
300km for reference. 



 
Figure 2. Color enhanced GOES infrared satellite imagery of the fourteen annular hurricane cases at or near peak visual annular 
characteristics.   Storm names, dates and times are given at the bottom of each individual image panel.  In addition, storm names and 
year are listed in the upper left of each image panel with North Atlantic and eastern/central North Pacific storm names indicated by 
yellow and cyan text, respectively. 



 
 
Figure 3.  Map of the tracks of the fourteen annular hurricane cases used in this study. The time periods when these hurricanes were 
subjectively identified to be annular hurricanes are indicated the thick portion of the track.  



 

Figure 4.  The cumulative probability distributions associated with the dependent data (1995-2003) 
as a function of binned discriminant function values created by the linear discriminant analysis.  
The dashed line is for the Non-Annular Hurricane (NAH) cases and the solid line is for the Annular 
Hurricane (AH) cases. 
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Figure 5.  Examples of GOES infrared satellite imagery of Hurricane Isabel (2003) and 
corresponding discriminant function values (dv) shown in the upper center of each panel.  Results 
are based upon dependent data and negative values of dv discriminate annular hurricane cases.  
Imagery times are 11 September 0345 UTC (top left), 12 September 1145 UTC (top right), 14 
September 0345 UTC (bottom left) and 18 September 1145 UTC (bottom right) and are also shown 
at the bottom of each panel. 
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Figure 6.  Schematic of the two step procedure used to objectively identify Annular Hurricanes. 
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Table 1.   Statistics of the important environmental conditions and IR imagery-derived 

characteristics related to Annular Hurricanes. Statistics are shown for  the radius of coldest 

azimuthally averaged TB (Rc), the azimuthal standard deviation at Rc (σc), the variance of the 

azimuthally averaged temperatures from the TC center to 600km (VAR), the maximum difference 

between Rc and any azimuthally averaged temperature at smaller radii (ΔTeye), the SSTs 

interpolated to the TC center (SST), the magnitude of the 200-hPa to 850-hPa wind shear vector 

(SHRD), the magnitude of the 500-hPa to 850-hPa wind shear (SHRS) vector, the zonal wind 

component at 200hPa (U200), the temperature at 200hPa (T200), the relative eddy flux 

convergence (REFC), and the best track value of maximum wind speed (Vmax). 

Quantity [units] Mean Standard 

Deviation 

Minimum Maximum 

Rc   [km] 80.9 19.7 62.0 128.0

σc   [oC] 3.0 1.1 1.5 5.8

VAR  [oC2] 712.1 141.3 391.2 978.6

ΔTeye  [oC] 69.3 13.5 19.6 79.9

SST  [oC] 26.7 0.7 25.4 28.4

SHRD [ms-1] 4.0 1.5 2.1 8.1

SHRS [ms-1] 3.2 1.2 0.7 6.0

U200 [ms-1] -4.8 2.3 -7.2 0

T200 [oC] -52.2 0.9 -53.4 -50.1

REFC [ms-1d-1] 0.2 1.2 -4.0 4.0

Vmax [kt] 107.2 12.8 85.0 125.0
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Table 2.   List of the fourteen AH cases identified in the Atlantic and East Pacific Hurricane basins 

(1995-2006).  Listed are the storm, basin, the times associated with the AH phase, the number of 

hours for each AH phase lasted, and the intensity range associated with the storm. 

Storm Basin Annular Period   Hours Intensity 

range     

(knots) 

Luis 1995 Atlantic 18 UTC 3 Sept  - 04 UTC 4 Sept  10 120 – 125 

Edouard 1996 Atlantic 00 UTC 25 Aug – 00 UTC 26 Aug  24 120 – 125 

Erin 2001 Atlantic  04 UTC 10 Sept – 09 UTC 10 Sept 6 100 – 105 

Isabel 2003 Atlantic 07 UTC 11 Sept – 21 UTC 11 Sept 

10 UTC 12 Sept – 22 UTC 12 Sept 

14 UTC 13 Sept – 02 UTC 14 Sept  

07 UTC 14 Sept -  20 UTC 14 Sept 

14   

12    

12    

14 

135 – 145 

140      

135 – 140   

135 – 140  

Kate 2003 Atlantic 17 UTC 03 Oct – 00 UTC 4 Oct   

04 UTC 04 Oct – 13 UTC 4 Oct 

5     

10 

100        

100 – 105 

Frances 2004 Atlantic 21 UTC 28 Aug – 02 UTC 29 Aug 6 115 

Barbara 1995 East Pacific 05 UTC 14 July – 14 UTC 14 July 10 115 – 120 

Darby 1998 East Pacific 12 UTC 26 Jul – 18 UTC 27 July 30 90 – 100 

Howard 1998 East Pacific 18 UTC 24 Aug – 03 UTC 27 Aug 57 115 – 85  

Beatriz 1999 East Pacific 18 UTC 12 Jul – 18 UTC 13 July 24 100 –105 

Dora 1999 East Pacific 18 UTC 10 Aug – 03 UTC 12 Aug 

03 UTC 15 Aug – 03 UTC 16 Aug 

33         

24 

115 – 120   

90 – 95  

Daniel 2000 East Pacific 20 UTC 27 July – 04 UTC 28 July 9 95 

Bud 2006 East Pacific 07 UTC 13 July – 13 UTC 13 July 6 100 

Daniel 2006 East Pacific 14 UTC 21 July – 22 UTC 22 July 33 120 – 130  
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Table 3. Summary of selection rules used to prescreen the input data and remove cases when an 

AH event is unlikely. Valid ranges are given for the radius of coldest azimuthally averaged TB (Rc), 

the maximum difference between Rc and any azimuthally averaged temperature at smaller radii 

(ΔTeye), the magnitude of the 200-hPa to 850-hPa wind shear vector (SHRD), the zonal wind 

component at 200hPa (U200), the relative eddy flux convergence (REFC), and the best track value 

of maximum wind speed (Vmax). 

 

Parameter Source Prescreening Criterion 

Rc IR Satellite Imagery <50 km 

ΔTeye IR Satellite Imagery < 15 oC 

SHRD NCEP analysis >11.3 ms-1 

U200 NCEP analysis < -11.8  or > 1.5 ms-1 

REFC NCEP analysis < -9 or >  11 ms-1 day-1 

SST Reynolds SST <24.3  or > 29.1 oC 

Intensity NHC Best Track < 84 kt 
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Table 4.  Normalized coefficients of the Annular Hurricane discriminant vector based upon the 

1995-2002 AH cases.   Statistics are given for the azimuthal standard deviation at Rc (σc), the 

variance of the azimuthally averaged temperatures from the TC center to 600km (VAR), the 

maximum difference between Rc and any azimuthally averaged temperature at smaller radii (ΔTeye), 

the magnitude of the 200-hPa to 850-hPa wind shear vector (SHRD), and the SSTs interpolated to 

the TC center (SST).  Note the discriminant divider is unit less number that causes the discriminant 

function values to be centered about a zero value. 

 

Discriminator Mean Standard 

Deviation 

Normalized 

Coefficient  

σc 4.21 2.56 -0.40 

VAR 552.73 215.10 0.79 

ΔTeye 59.67 20.99 0.50 

U200 -3.72 2.88 -0.11 

SST 27.58 1.08 -0.61 

Discriminant Divider 0.53 
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Table 5.  Normalized coefficients of the Annular Hurricane discriminant vector based upon the 

1995-2006 AH cases.   Statistics are given for the azimuthal standard deviation at Rc (σc), the 

variance of the azimuthally averaged temperatures from the TC center to 600km (VAR), the 

maximum difference between Rc and any azimuthally averaged temperature at smaller radii (ΔTeye), 

the magnitude of the 200-hPa to 850-hPa wind shear vector (SHRD), and the SSTs interpolated to 

the TC center (SST).  Note the discriminant divider is unit less number that causes the discriminant 

function values to be centered about a zero value. 

 

Discriminator 
Mean

Standard 

Deviation

Normalized 

Coefficient  

σc 4.23 2.45 -0.44 

VAR 558.21 218.52 0.61 

ΔTeye 56.73 21.61 0.81 

U200 -4.55 2.89 -0.15 

SST 27.68 1.04 -0.80 

Discriminant Divider 0.76 

 


