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ABSTRACT: To produce more precise descriptions of air–sea exchanges under tropical cyclones (TCs), spaceborne

synthetic aperture radar (SAR) instruments provide unique capabilities to probe the ocean surface conditions, at very high

spatial resolution, and on synoptic scales. Using highly resolved (3 km)wind fields, an extensive database is constructed from

RadarSat-2 and Sentinel-1 SAR acquisitions. Spanning 161 tropical cyclones, the database covers all TC intensity categories that

have occurred in 5 different TCbasins, and include 29 cases coincident with SFMRmeasurements.After locating theTC center, a

specific methodology is applied to filter out areas contaminated by heavy precipitation to help extract, for each acquisition, the

maximum wind speed (Vmax), its associated radius (Rmax), and corresponding outer wind radii (R34/50/64 kt). These param-

eters are then systematically comparedwith best track (BTK), andwhen available, SFMRairbornemeasurements. For collocated

SFMR and SAR observations, comparisons yield root-mean-squares of 3.86 m s21 and 3 km for ocean surface wind speeds and

TCRmax, respectively. High correlations remain for category-5 cases, with Vmax exceeding 60 m s21. The largest discrepancies

are found between BTK and SAR Rmax estimates, with Rmax fluctuations poorly captured by BTK, especially for rapidly

evolving category-3, -4, and -5TCs. In heavy precipitation (.35mmh21), the SARC-bandmeasurementsmay be impacted, with

local ambiguities associated with rain features, as revealed by external rain measurements. Still, this large dataset demonstrates

that SARmeasurements have unique high-resolution capabilities, capturing the inner- and outer-core radial structure of the TC

vortex, and provide independent and complementary measurements than those used for BTK estimates.
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1. Introduction

Tropical cyclones (TCs) are better observed than ever be-

fore with improvements in coverage and capabilities from

both remotely sensed and in situ observations. However, be-

cause of the heavy reliance of satellite-based observations

in the oceanic regions where TCs form and track, creating

precise descriptions of the TC surface wind field remains

challenging as the necessary observations are often lacking

(Knaff et al. 2016). In fact, estimates of most TC parameters

includingmaximum sustainedwinds (Vmax) (Velden et al. 2006;

Demuth et al. 2004) and wind radii–the radial extent of 34-, 50-,

and 64-kt (1 kt’ 0.51 m s21) winds (Demuth et al. 2006; Kossin

et al. 2007; Knaff et al. 2011, 2016) are heavily weighted toward

indirect satellite-based methods. Nonetheless, historical records

or best tracks (BTK) containing TC location and intensity, and

in some cases wind radii, have been compiled using such

methods (Knapp et al. 2010, 2018; Landsea and Franklin 2013).

The radius of maximum wind speed (Rmax) is a critical

parameter for a number of applications. It helps to locate the

maximum momentum injected in the ocean when strong mix-

ing occur (Vincent et al. 2012; Price 1981). Rmax is also an

essential scaling factor for the barotropic and baroclinic ocean

responses (Geisler 1970; Ginis 2002; Kudryavtsev et al. 2019a),

wind model parameterization (Holland 1980; Willoughby and

Rahn 2004;Wood et al. 2013; Chavas et al. 2015) and operational

applications/models (Knaff et al. 2007, 2016), as well as to antic-

ipate trapped-wave effects (Young et al. 2013; Kudryavtsev et al.

2015). Integrated kinetic energy (IKE) and wind power index

(WPI) also rely on TC size information. IKE and WPI estimates

were reported to outperform the sole use of Vmax estimates, to

assess damages (Powell and Reinhold 2007), sea surface tem-

perature TCwake signatures (Vincent et al. 2012), and poststorm

ocean heat content capacity response (Knaff et al. 2013).

However, Rmax is often very difficult to estimate in absence

of a well-defined eye feature in satellite imagery (Kossin et al.

2007; Lajoie andWalsh 2008) or aircraft reconnaissance due to

the small spatial scales and strong wind gradients associated

with Rmax, and the shortcomings associated with the various

satellite methods (Lajoie and Walsh 2008; Knaff et al. 2011).

The difficulty in estimating Rmax, likely leads to the reason

why Rmax is not best tracked. Wind radii, on the other hand,

are routinely used by operational centers for wave and storm

surge forecasts (Sampson et al. 2010; NHC 2016), as well as the

wind speed probability forecasts (DeMaria et al. 2013). In fact,

since 2004, wind radii have been systematically reanalyzed for

the best track at the National Hurricane Center (NHC) (Landsea

and Franklin 2013). Similarly, the Joint TyphoonWarning Center

(JTWC) has best track wind radii available since 2013 and in the

final best tracks since 2016 (Sampson et al. 2018).
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To help in analyzing wind radii, operational scatterometers,

radiometers, microwave sounders, and IR-based techniques

are utilized (Sampson et al. 2017). A new generation of space-

borne instruments has recently emerged, the wide-swath

L-band passive microwave sensors SMAP and SMOS (Reul

et al. 2016; Meissner et al. 2017), able to estimate ocean surface

wind speeds exceeding 40–50 m s21, and also the CYGNSS

constellation (Ruf et al. 2016; Morris and Ruf 2017) now as-

sisting in that effort. Yet, while SMAP and SMOS have large

swaths coverage that is ideal for estimating TC size and wind

radii (Reul et al. 2017), these sensors have low spatial resolu-

tions (40–50 km). This precludes precise inner-core TC de-

scriptions. To date, only limited airborne Stepped Frequency

Microwave Radiometer (SFMR) measurements provide means

to probe the high wind area of hurricanes (Uhlhorn et al. 2007;

Klotz and Uhlhorn 2014). In this context, numerous studies al-

ready demonstrated the potential to use satellite synthetic ap-

erture radar (SAR) measurements to provide TC surface wind

field at very high resolution (Katsaros et al. 2000; Li et al. 2013).

This unique mapping capability, further supported by highly

sensitive cross-polarization measurements to increasing winds,

has often been highlighted with respect to SFMR (Zhang and

Perrie 2012; Horstmann et al. 2015; Mouche et al. 2019), buoys

(Vachon and Wolfe 2011; Zhang et al. 2012), L-band passive

remote sensing measurements (Mouche et al. 2017; Zhao et al.

2018), and global models (Fang et al. 2018). Still, most of these

TC studies were not based on a large number of cases, especially

those cases reaching winds higher than 40 m s21. Using collo-

cated SFMRmeasurements, Mouche et al. (2019) demonstrated

how combined co- and cross-polarization C-band SAR mea-

surements, efficiently resolve TC inner-core wind field char-

acteristics. In that study, SAR measurements sampling

Hurricane Irma (2017) when it had category (CAT)-5 intensity

were compared to SFMR measurements and yielded compara-

ble ocean surface wind speeds, with bias and root-mean-square

of about 1.5 and 5.0 m s21, respectively. Retrieved wind

structure parameters outside the high wind inner core were

also reported to be in agreement with NHC’s best track and

combined satellite- and aircraft-based analyses. The Irma

study showed that within the TC inner core, SAR measure-

ments alone can provide instantaneous and independent

measurements of Vmax and Rmax, even in high wind speed

gradients (6.5 m s21 km21).

It is worth noting that contrary tomost of the low-orbit Earth

observation satellite missions, SAR instruments cannot continu-

ously acquire wide swath data in high-bit rate modes.

Anticipating and tasking SAR acquisitions with respect to the

hurricane tracks forecast are thus required. Such tasking has

been demonstrated over the past several years. In fact, since

2016, Sentinel-1 acquisition campaigns have thus been spe-

cifically designed, to test the instrument capabilities for

mapping TCs (see Mouche et al. (2019) for details). A similar

TC data acquisition program using RadarSat-2 was also

conducted by the Canadian Space Agency (CSA) (Banal

et al. 2007). Today, the combined efforts of these campaigns

have provided many TC cases–strongly maximizing the utility

of SAR acquisitions from both Copernicus/ESA Sentinel-1

and MDA/CSA RadarSat-2 missions.

In the present study, our main motivation is to describe how

the SAR-derived wind field can be used to extract important

TC parameters and evaluate their consistency with respect to

best track and SFMR airborne measurements. Specifically, the

potential of SAR high-resolution observations for estimating

Rmax is discussed. 161 SAR acquisitions have thus been col-

lected resulting in the first extensive SAR-TC database. They

sample all TC intensity categories occurring in five different TC

basins, and include 29 collocations with SFMR. After precisely

locating TC center and areas contaminated by heavy precipita-

tions, Vmax, Rmax, and outer wind radii (R34/50/64 kt) are

extracted from each acquisition. The data andmethodology used

are in section 2. TC structure parameters are then compared

with best track from JTWC and NHC and SFMR estimates in

section 3. Section 4, provides insights and in-depth analysis about

limitations, e.g., rain impacts on C-band SAR measurements.

Finally, section 5 summarizes the main outcomes of the present

analysis, and provides prospects for future investigations.

2. Data and method for SAR analysis

a. Synthetic aperture radar

This study benefits from three different C-band synthetic

aperture radar (SAR) missions including Sentinel-1A (S1A),

Sentinel-1B (S1B), and RadarSat-2. S1A and S1B are polar-

orbiting satellites operated by Copernicus/European Space

Agency and were launched in 2014 and 2016, respectively.

RadarSat-2 is a polar-orbiting satellite operated by the Canadian

Space Agency (CSA) and was launched in 2007. All current

SAR missions have several exclusive acquisition modes and

cannot continuously acquire data, but rather acquisitions are

scheduled. A dedicated acquisition strategy is thusmandatory to

maximize tropical cyclone (TC) observations. The hurricane

watch program (Banal et al. 2007) for RadarSat, and more re-

cently, the Satellite Hurricane Observation Campaign (SHOC)

(Mouche et al. 2019) for Sentinel-1 and RadarSat-2 were dedi-

cated efforts that have maximized the collection of SAR mea-

surements over TCs.

S1A, S1B, and RadarSat-2 can be operated in wide swath

modes and can acquire C-band backscatter measurements with

different polarization states. Polarized radar images of the

same scene can thus be combined for geophysical parameters

retrieval. For ocean surface wind measurements over TCs, one

generally uses the polarization configuration VV 1 VH, the

antenna emitting electromagnetic waves in V polarization and

receiving in both V and H polarization states. Here, the data-

base solely builds on SAR observations in this polarization

configuration acquired in wide swath modes. The swath widths

range from 250 to 500 km depending on the sensor and/or

modes. In comparison to other polar orbiting sensors such

as radiometers or scatterometers, SAR swaths are smaller.

However, SAR product resolution is much higher than other

active or passive polar orbiting systems. Native product (i.e.,

Level 1 product from the Space Agency before applying the

wind retrieval algorithm) resolutions used here to estimate the

ocean surface wind speed are 20, 50 or 100 m depending on

sensor and/or modes.
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The ocean surface wind retrieval algorithm follows the ini-

tial approach proposed by Mouche et al. (2017) and further

refined for major hurricanes (Mouche et al. 2019). The method

relies on the joint use of both co- and cross-polarized signals,

befitting from both the copolarized signal’s sensitivity and high

signal-to-noise ratio for low to moderate wind speeds (i.e.,

below 25 m s21), and from the cross-polarized signal sensitivity

to very high wind speeds (Zhang and Perrie 2012). Compared

to actual scatterometer measurements, the use of cross-

polarized signals is key to mitigate the wind speed sensitivity

issues often reported for copolarization backscatter signals

(Quilfen et al. 1998).

A representative example of this co- and cross-polarization

capability was provided in Mouche et al. (2019) where S1A/B

measurements led to wind speed estimates ranging from 10 to

75 m s21 in Hurricane Irma (2017) on 7 September when the

storm was estimated to have category-5 intensities. Irma’s wind

speed estimates were compared to collocated SFMR estimates

and the overall bias, root mean squared error (RMSE), and

correlation were 1.5 m s21, 5.0 m s21 and more than 90%, re-

spectively. It is, however, important to note that the C-band

backscatter measurements can have contributions from ocean

surface winds and rainfall (Katsaros et al. 2000; Li et al. 2013),

possibly leading to significant localized contamination in the

wind speed estimates. In Hurricane Irma, the respective con-

tribution of bothwind and rain in areas with rain rates exceeding

45 mm h21 and close to the TC center (30–35 km) was unclear.

Rainfall was found to lead to about a 10% uncertainty in wind

estimates (Mouche et al. 2019). Local gradient analysis of the

radar backscattered signals (Koch 2004) is systematically per-

formed in the present analysis to help identify localized regions

where both rain and wind contribute to the C-band signals.

Figure 1 shows an example of SAR wind speeds acquired in

Hurricane Irma on 8 September and Fig. 2a shows the coinci-

dent cross-polarization backscatter. The retrieval resolution, in

this case, is 3 km and the backscattered signals range from235

to 217 dB. The backscatter has a clear minimum within the

hurricane’s eye. Backscatter then increases outward this min-

imum area with rapid signal increases, corresponding to the

radius of maximum winds. Specific features related to rain

events can be traced in the backscatter signal. In the north-

western part, a bright pattern with a semicircular shape is de-

tected and corresponds to an area of significant rainfall.

Mouche et al. (2019) showed that rain impacts can also be as-

sociated with a small darker circular ring encircling an area just

outside the largest backscatter signals and winds near the eye

region (noticeable in section 4b example). Such a sudden signal

decrease corresponds to very localized and heavy precipitation–

fitting the general eyewall structure found in Hurricane Allen

(1980) discussed in Jorgensen (1984). SAR thus provides in-

stantaneous measurements of radar backscatter signals from

very localized ocean surface areas. Here, a 3-km-resolution grid

is adopted, which corresponds to the area that would be affected

by a 1 min sustained 50 m s21 wind speed.

b. Best track and SFMR

TC best tracks that are prepared by different Regional

Specialized Meteorological Center (RSMCs) and Tropical

Cyclone Warning Center (TCWCs) depending on their areas of

responsibility, provide 6-hourly estimates of location, intensity

and other parameters covering each TC’s life cycle. Initiated

from near-real-time observations, these analyses are revisited

after the TC seasons to take benefit of all available measure-

ments, from surface information such as buoys, weather radars,

platforms, up to aircraft, dropsondes and satellite remote sensors

(Knapp et al. 2010), and are a subjectively smoothed represen-

tation of a tropical cyclone’s history (Landsea and Franklin

2013). The analyses are performed by each RSMC, according to

the data availability, not the same for each area, e.g., geosta-

tionary observations, their own strategy and conventions, e.g.,

time averaging periods. The gathering of all these information

into a global and homogeneous database is thus not straight-

forward (Kruk et al. 2010), and is part of the efforts carried out to

build the IBTrACS database (Knapp et al. 2010). A TC analysis

starts by determining the TC location and the maximum sus-

tained wind speed (Vmax), before including other parameters,

such as wind radii or radius of maximumwind speed (Rmax), to

refine the wind structure characterization. Specifically, three

different wind radii are defined for each of the four geographical

quadrant (NE, SE, SW and NW). These parameters provide the

estimates of the maximum extent with wind speed greater than

34 (R34), 50 (R50), and 64 (R64) knots. Note, all RSMCs and

TCWCs do not distribute these parameters.

In the following, we only focus on analyses from the NHC

and the JTWC centers. At present, NHC and the JTWC both

reanalyze R34, R50, and R64 following the season, but do not

reanalyze Rmax (Knaff et al. 2016). Indeed, both centers rely

on the Automated Tropical Cyclone Forecasting (ATCF)

system, designed to ease and harmonize forecast processing

and track record (Miller et al. 1990; Sampson and Schrader

2000), with estimates of Rmax and wind radii, and the same

convention for time averaging. In addition, both centers create

FIG. 1. Illustration of our methodology approach with the ex-

ample of the SAR-derived wind field of category-5 Irma on 8 Sep

2017. The grid displayed is a Cartesian projection of 1 km and

0.58-resolution polar grid, with TC eye center as origin. Dashed

blue and black solid contours delineate, respectively, the eye extent

and the azimuthal Vmax ring.
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best track analyses for all storms, offering a homogeneous

dataset for comparisons with SAR derived parameters over all

five different ocean basins. In absence of IBTrACS data,

ATCF archive (only 2018 cases) is solely used. Overall, the

different strategies and methods to estimate TC parameters

remain similar. Vmax is mainly inferred by theDvorak analysis

in combination to cloud pattern recognition from visible and

infrared (IR) satellites to TC intensity (Velden et al. 2006,

2017), but at times can also consider other methods and aircraft

reconnaissance, when available. R34, R50, and R64 wind radii

are derived from scatterometers, cloud/feature-tracked winds,

new L-band passive radiometer measurements (Reul et al.

2016; Meissner et al. 2017) and other operational techniques

(Knaff et al. 2011, 2015), including IR (Kossin et al. 2007) or

microwave sounder (Demuth et al. 2004, 2006). At last and

despite its aforementioned importance, Rmax is generally

subjectively estimated, except when airborne data from SFMR

or flight level are available.

If other methods exist (Lajoie and Walsh 2008), they are all

indirect methods as they do not retrieve any ocean surface

wind field before providing the wind radii estimates. To note,

neither JTWC nor NHC have been using SAR data for their

analyses. Therefore, in addition of being the most integrated

and quality-controlled data source, best track analysis is an

independent source of comparison.

Rain rates and ocean surface wind speeds from the SFMR

are also used as independent measurements. Since its first ex-

perimental flight in 1980 through Hurricane Allen, SFMR is

now installed on all U.S. hurricane reconnaissance aircraft to

routinely and operationally provide wind and rain estimates

during TC events. The concept relies on the use of a C-band

radiometer operating at six different frequencies ranging from

4.5 to 7.2 GHz with different sensitivities to foam coverage at

the sea surface (related to ocean surface wind speed) and to

rain (Uhlhorn and Black 2003).

Over the course of time, retrieval algorithms have been

further improved, as the possibilities to refine the filtering of

the data and better describe the brightness temperature de-

pendency to wind and rain increase with the number of avail-

able flights (Uhlhorn et al. 2007; Klotz and Uhlhorn 2014).

Recently, Sapp et al. (2019) proposed new improvements

including a bias correction to calibrate the whole dataset, a new

model for flat-surface emissivity (Meissner and Wentz 2012), a

new frequency dependence for the atmospheric transmissiv-

ities, leading to a new method and formulation to derive the

relationship between the wind excess emissivity and the ocean

surface wind speed (so-called wind GMF, for Geophysical

Model Function). In particular, arguing on possible non-

geophysical contamination of the lower-frequency channel, the

highest-frequency channel has been considered to derive a new

FIG. 2. Example of collocation and coanalysis between SAR and SFMR measurements in the case of Irma on 8 Sep 2017 (a) SAR

backscattered signal in cross-polarization from RadarSat-2 SAR from 1053 to 1055 UTC. (solid pink line) SFMRmeasurements location

during hurricane hunters flight from 0853 to 1253 UTC. (colored line) Collocated SFMRmeasurements location within a time window of

62 h centered on SAR acquisition start time. Changes in color indicate the time difference between SAR and SFMR measurements.

(b) Collocated SFMR ocean surface wind speed (purple and green) and rain rate (blue and cyan) measurements with respect to time

difference between SAR and SFMR measurements. (c) Ocean surface wind speed measurements from SAR (black) and SFMR (purple

and green) and SAR backscattered signal (red) in cross-polarization evolution with respect to time difference between the two sensors.

(d) Direct comparison between SAR and SFMR wind speed (green and purple). (e) Ocean surface wind speed profile with respect to

distance from TC center as measured from collocated SFMR (green and purple) and SAR (black) measurements within a 62 h time

window. Vertical bars indicate the maximum of wind as given by the two sensors.
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wind GMF (and its frequency dependency). This also im-

posedmodification of the rain absorptionmodel coefficient to

maintain the initial rain rates performances (Klotz and

Uhlhorn 2014). Overall, SFMR wind speeds are expected to

be higher than operational products for wind speeds larger

than 15 m s21 and are judged as nonreliable for rain rates

measurements larger than 45 mm h21 (Sapp et al. 2019). This

study does not aim to discuss the two existing SFMR prod-

ucts, andmainly relies on products processed and provided by

NOAA/NESDIS (Sapp et al. 2019). For sake of complete-

ness, results obtained with AOML/HRD products are also

considered in themethodology section (see section 2c), and in

the discussion section (see section 4).

Because the SFMR design involves a single nadir-viewing

antenna, only transects are available. Despite these limitations,

the combined estimates of rain rate and ocean surface wind

speed at very high resolution (temporal resolution is 1 s) makes

this instrument unique for validating SAR-derivedwind speeds

and to discuss the possible rain impacts, especially in the TC

inner core.

c. Methodology

While the subjectively smoothed best track content already

results from a multisource reanalysis, SFMR and SAR provide

more localized measurements. Although SAR and SFMR can

both be used to derive local ocean surface wind speeds, their

differences in coverage and temporal resolution need to be

considered in order to build meaningful comparisons. A spe-

cific methodology to coanalyze SAR measurements with each

of these sources is needed.

To prepare for the evaluation of SAR’s ability to estimate

Vmax, Rmax, and wind radii parameters, a three-step ap-

proach is proposed to extract those same parameters from the

SAR wind products: 1) find the TC center, 2) identify the azi-

muthal Vmax ring and Rmax, 3) compute mean wind radii

values. Irma’s SAR-derived wind field on Fig. 1 illustrates the

different processing steps:

d TC center: The TC position is first linearly interpolated using

the best track at satellite-acquisition time. In the vicinity of

this position (100 km), the signal contrast is computed for the

two polarized images. Selecting the one with the strongest

gradient, we search for the location of the signal intensity

minimum. These locations are then averaged to get a second

TC center guess, used to remap the SAR wind on a polar

grid. The retained polarization channel and the wind speed

map are further jointly coanalyzed with the heterogeneity

mask to estimate the maximum gradient in all azimuth di-

rections and to derive the eye extent (see dashed blue line on

Fig. 1), from which the mean center is computed to obtain

the TC center (see red cross on Fig. 1). A new polar grid

centered on this TC center is then defined, resolution 1 km in

distance and 0.58 in direction.
d Vmax and Rmax: The first Rmax estimate is defined as the

closest peak to the TC center obtained from the azimuthally

averaged 1D radial wind speed profile. Based on this first

guess, we further derive Rmax for each available azimuth

angle of the polar grid (black line on Fig. 1). SAR-derived

Vmax is defined as the 99th percentile of the wind speed

values associated to the azimuthal Rmax values. SAR-

derived Rmax is then simply the radius corresponding to

this percentile.
d Wind radii: The 34-, 50- and 64-kt wind radii are estimated

for the four geographical (NE, NW, SW, SE) quadrants. For

each quadrant we search for the closest radial values above

the wind speed threshold (34, 50, or 64 kt) in all of the

quadrant’s azimuth directions. We then keep the 10% of the

largest values associated to the corresponding wind speed, to

provide a SAR-derived wind radii. Estimates are considered

optimal when quadrants are at least 50% complete. Under

this threshold, they are not calculated. The use of the 90th

percentile for deriving the maximum extent of the wind radii

from high-resolution satellite wind measurements allows to

filter unrealistic outliers.

Finally, for SAR–BTK comparisons, we linearly interpo-

late best track at satellite acquisition time for each TC pa-

rameters as instantaneous SAR measurements rarely match

synoptic times.

Here we examine SAR’s capabilities for measuring ocean

surface wind speed near the inner core of TCs, including Vmax

and Rmax, by using nearly coincident SFMR wind speed

measurements. The two main differences between SAR and

SFMR observations are (i) the duration required to sample a

given TC and (ii) the coverage of the TC structure. For the

Irma TC case presented in Fig. 2, SAR data are acquired in less

than 3min, while the SFMR data collection lasts more than 9 h.

While the ‘‘multi-alpha’’ reconnaissance pattern (the solid

purple line) is designed to sample the 2D aspects of the TC, it

can only do so in a low-spatial-resolution and temporally av-

eraged manner. A two-step procedure has been adopted (see

Mouche et al. 2019 for details) to best compare SFMR and

SARwind speeds. SFMRmeasurements are resampled at 3 km

resolution, and the time differences are taken into account

between each SFMR measurement and the SAR acquisition

time following storm motion. As shown in Fig. 2a, this proce-

dure shifts the initial SFMR measurements locations (purple

solid line) with respect to SAR acquisition time into a collo-

cated track (colored solid line). In addition, to further mitigate

the time difference impact, only collocations within 62 h are

considered. Figure 2b illustrates SFMR wind and rain mea-

surements along the transect used for colocating in the

Hurricane Irma, while Fig. 2c shows the corresponding radar

backscattered signal in cross-polarization (red) and the wind

speed measured by the SAR (black). As expected from pre-

vious studies (Zhang and Perrie 2012; Mouche et al. 2019), the

correlation between radar signal and SFMRwind speed is very

high, and the two sensors are able to capture the TC charac-

teristics within the inner core. Finally, wind speeds from SAR

and SFMR can be directly compared (see Fig. 2c). In particu-

lar, when the collocation time is less than 30min and during the

transect across the hurricane eye, we note the remarkable

agreement for wind speeds ranging from 15 to 60 m s21. This

example also illustrates the difference between wind speed

measurements obtained when using NOAA/NESDIS or

AOML/HRD products. Although the shape of the two wind
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speed transects from SFMR remain very similar, we can

notice differences for the highest values of wind speeds. The

impact on SAR comparison is further illustrated on Fig. 2d.

However, SFMR measurements may not necessarily cross

the area corresponding to the maximum wind speed.

Consequently, Rmax parameter cannot always be derived

from SFMR measurements. To overcome this limitation, we

introduce the ‘‘effective Rmax’’ parameter. It is defined as the

radius of maximum wind speed obtained from all the SFMR

transects collocated with SAR measurements. These transects

are combined to derive a single averaged wind speed profile for

each of the two sensors from which the maximum of wind

speed and corresponding radius can be estimated. This is il-

lustrated on Fig. 2e. The averaged wind profile derived from

SFMR collocated transects is shown (solid purple line) with

respect to the distance from TC center. Here the maximum

wind speed and the corresponding effective Rmax are about

60 m s21 and 37 km, respectively (see solid vertical purple bar).

When applying the same method to the SAR collocated wind

measurements, we obtain a very similar wind profile (see solid

gray line), yielding an effective Rmax of 35 km that can be

directly compared to SFMR estimate. Figure 2e also presents

the two different wind speed profiles obtained with the two

SFMR products available. As anticipated with the transect il-

lustration, these products yield to some differences for the

highest wind speed values, but not for the effective Rmax.

This analysis has been applied to all available collocated

SAR/SFMR data (see section 3).

d. Dataset overview

Thanks to the SHOC campaign, a total of 194 acquisitions

have been obtained, enabling an unprecedented SAR TCs

collection over all five distinct TC basins. So far, only the North

Indian Ocean is missing, but acquisitions have been pursued in

2019. Best track analysis is available for all cases, with a total of

29 collocated SFMR flights. Yet, as discussed in section 2c,

specific requirements such as the mandatory presence of a

complete eye structure are imposed. Two situations prevent

our analysis procedure: 1) when the swath border intersects the

Rmax and 2) when land contaminates the retrievals (.75% of

the full scene). Both situations effectively prevent a full eye

or eyewall description. In addition, cases without clear eye

structures (~seven cases discussed in section 4) were removed.

Overall, about 85% of initial acquisitions are preserved.

After this quality control step, 161 snapshots corresponding

to 72 different tropical systems in the period 2015–18 can then

be analyzed. Figure 3 synthesizes the dataset. For each storm,

the 6-h best track locations with corresponding storm intensity

(colors) is indicated. Specific markers highlight the collocation

opportunities: A red square when only-SAR is available and a

green diamond when simultaneous SAR1SFMR measure-

ments coexist. Because aircraft measurements are restricted to

North Atlantic and eastern North Pacific basins, with a ma-

jority occurring in the Atlantic, collocations with SFMR

amount to only 13% of the dataset, with a total of 23 Atlantic

and 6 Pacific flights. 70% of Atlantic hurricanes cases are ac-

tually retained. The intensity histogram shown in the bottom

panel of Fig. 3 illustrates the spectrum of TC intensities. Unlike

most of previous SAR-based studies, all Saffir–Simpson cate-

gories are sampled. Therefore, this dataset captures the gen-

eral distribution and basins properties observed in climatology

studies (Chan and Chan 2012; Knaff et al. 2014; Chavas et al.

2016), in terms of size and activity.

To complement this SAR dataset, we also collocate rainfall in-

formation from two different sources: the half-hourly Integrated

Multisatellite Retrievals for GPM (IMERG) product, with 0.18
resolution and global coverage (Huffman et al. 2019), and specific

NOAA Next Generation Weather Radar (NEXRAD) network

samples, with an 1 km range and 18-azimuth high resolution for a

450 km coverage. IMERG is systematically used to identify cases

FIG. 3. Composite view of TC cases data constellation for each geographical zone; basin locations are indicated in the global map.

Lifetime positions from best track are displayed for each TC; colors depict intensities with respect to Saffir–Simpson scale. Markers are

stated for TC positions with measurements. Red squares indicate SAR measurements only and green diamonds indicate sequential

measurements of SAR and SFMR.
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with heavy rain situations (.35 mm h21), around the inner-core

region. Regarding NEXRAD, specific cases have been selected to

help discussing precipitation impacts on C-band sensors (Katsaros

et al. 2000; Mouche et al. 2019).

3. Comparison of TC parameters

a. Ocean surface wind speed

We follow the three-step approach detailed in section 2c for

the 161 quality-controlled SAR cases. Results obtained for

Vmax, are shown in left panel of Fig. 4. Overall, there is a

strong correlation (R5 0.87) and low bias (4.7%) between best

track and SAR Vmax estimates. A larger scatter is noticeable,

mainly in the vicinity of 10–40 m s21. It leads to a RMSE

around 9 m s21. We further define specific flags to isolate po-

tential contamination sources in these comparisons, possibly

resulting from uncompleted TC wind field due to land (pink

diamond) or swath issues (blue diamond), TC with double eye

Rmax (red circle) and rain signature (purple circle). It is also

possible that Vmax comparisons are biased by the 6-hourly and

smoothed nature of best track analysis, especially for cases with

rapidly evolving intensities [red squares for jdy/dtj . 10 kt

(6 h)21]. Specific data processing methods are thus considered,

corresponding to three possible situations: 1) Fast evolving

cases: as a TC intensity may not vary linearly, we simply choose

the closest time instead of the interpolated one; 2) heavy rain

(.30 mm h21): in presence of ambiguous peak, we select the

second maximum wind speed in area where IMERG rain rate

is lower than 30 mm h21; 3) double Rmax: in case of an eyewall

replacement cycle (ERC), we select the SAR Vmax associ-

ated with the closest ring to the best track Rmax estimate.

These corrections define what we called the ‘‘adjusted’’ SAR

or best track Vmax, to yield new comparisons presented in

the right panel of Fig. 4. Statistics slightly improve, with

higher correlation (R 5 0.92) and lower normalized bias

(2.3%). Some of the scatter is also related to uncertainties in

the best track intensity estimates (Torn and Snyder 2012;

Landsea and Franklin 2013).

The methodology discussed in section 2c, is applied to

the collocated SFMR/SAR dataset presented in section 2d.

Results and summary statistics are presented in Fig. 5. Overall

(blue and red dots together), a high correlation (R . 0.90),

small bias (,0.5 m s21) and RMSE (,5 m s21) are obtained.

An additional filtering to solely select collocated measure-

ments obtained within630 min can be applied (red dots). This

improves the statistics–particularly for RMSE now at about

4 m s21. As discussed byMouche et al. (2019), most outliers are

associated with subtle errors in collocating points, which can

adversely affect verification statistics performed at such high

resolution. This sensitivity is particularly large in the eyewall

region where a few kilometers of error in the collocation can

lead to significant differences in wind speeds in a steady in-

tensity state. To note, these results are obtained when SFMR

measurements are considered as valid, i.e., excluding mea-

surements with rain rates larger than 45 mm h21 (Sapp et al.

2019). Using only the 29 SFMR cases clearly shows that SAR

provides high quality ocean surface wind speed measurements

up to 70–75 m s21.

b. Wind structure

Here we compare best track estimates of Rmax and wind

radii to those calculated from SAR (see section 2c). Figure 6

presents all values obtained for the three wind radii (R34:

green; R50: blue; R64: yellow), and includes all geographical

quadrants. Correlation is high, larger than 0.85 for the three

wind radii. The normalized bias is negligible (about 23%) for

R34 and R50, but about 10% for R64. R64 from SAR are

generally larger than values given in the best track. The scatter

index increases with wind speed values associated to the radii,

yielding to 29% for R64. As mentioned, best track parameters

FIG. 4. Comparison of best track and SAR-derived Vmax. Disturbance sources are indicated with specific markers to

guide analysis. Correlation (R), normalized bias (nbias) calculated as (VmaxSAR 2 VmaxBTK)/VmaxBTK,

root-mean-square error (RMSE), and scattering index (SI) are added as statistical tools. Comparison (a) before

and (b) after treatments of flagged values.
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are mostly derived from indirect methods (section 2b) or low-

orbit satellite missions using medium to low-resolution (12.5–

50 km) observations (Brennan et al. 2009;Meissner et al. 2017).

This could explain the observed spread, especially, the in-

creasing scatter index for R64 that typically has values less than

100 km. In addition, radii associated to higher winds may have

higher temporal variability (Chavas and Lin 2016), possibly not

captured by the 6-hourly best track analysis—especially if the

estimate relies on sparse low-orbit satellite measurements. The

number of wind radii available in the best track (Ntotal in legend

of Fig. 6), fromSARdata (NSAR in the legend of Fig. 6), and that

are used for the comparison (Ncoloc in legend of Fig. 6) are also

indicated for each wind radii on Fig. 6. Due to swath issues

(e.g., the southern part in Fig. 1) preventing a complete TC

structure description, SAR measurements are sometimes

unable to estimate wind radii in all geographical quadrants

and/or at all wind thresholds. Consequently, for R34 gen-

erally associated with the largest radius, only about 50% of

the best track values can be compared, whereas this number

rises to about 70% and 90% for R50 and R64, respectively.

Note that the existence of the best track wind radii is dic-

tated by the best track intensity (for instance R50 and R64

do not exist for tropical storms with Vmax , 50 kt). So the

best track does not always have wind radii values to compare

to SAR. This explains the difference between NSAR and

Ncoloc parameters. In particular, NSAR 5 354 and Ncoloc 5
286 parameters for R64 indicates that SAR observations

provide more R64 estimates than best track. This difference

decreases for R50 and R34, suggesting resolution issues in

R64 estimates.

Results of comparisons of Rmax are shown in Fig. 7a. As

for Vmax, additional corrections can be applied (see Fig. 7b)

to account for best track or SAR parameter uncertainties.

Contrary to Vmax, large scatter index (~50%) and RMSE

(~25 km) are found and persist despite additional corrections.

The bias remains almost constant. Correlation increases (from

0.47 to 0.73), but it is mostly governed by double eyewall cases,

which strongly impact the estimates. Below category-1 TC,

tropical depressions and storms rarely exhibit a complete eye

(Vigh et al. 2012). When discarding these cases, for which

Rmax and TC center definition can be quite subjective, a clear

improvement is obtained, with a reduced RMSE (11.6 km) and

scatter index (32%). Yet, the spread is still high and bias re-

mains unchanged (SAR-derivedRmax are globally smaller). A

binning of the Rmax values from best track is also noticeable in

the vicinity of 20–40 km. Overall, this comparison reveals an

overestimation of Rmax parameters from the best track when

compared to SAR estimates, for all TC intensities available in

our study.

To compare the effective Rmax from SAR and SFMR, as

defined in section 2c, we only examine hurricane strength

cases in the SAR–SFMR collocated dataset. Seventeen cases

of the 29 available are ultimately used. Figure 8a presents

comparisons and associated statistics of effective Rmax. The

color code indicates SFMR maximum wind speed for each

case. Again, the agreement is very good with correlation

coefficient larger than 0.70, RMSE of 12 km and bias lower

than 5 km. SARmeasurements provide Rmax values from 10

to 70 km, with no significant dependency with respect to

current intensity. The present analysis, however, yields two

clear outliers, i.e., the two dots within the purple ellipse on

Fig. 8a. They are both corresponding to data acquired over

Hurricane Florence around 1100 UTC (SAR acquisition

FIG. 5. SFMR-derived ocean surface wind speed vs SAR-derived

ocean surface wind speed. Resolution is 3 km. Blue dots indicate

the collocated data within 62 h and red dots within 630 min.

Green line is the quantile–quantile (Q–Q) plot applied to collo-

cated data within 630 min, some of the main quantiles are indi-

cated for convenience (green).

FIG. 6. Comparison of best track and SAR-derived maximum

extent quadrant wind radii. Extents from SAR are inferred from

the mean quadrant of the 10% largest values. All quadrants’ wind

radii estimates are included; colors of both statistics and chart are

set accordingly: green indicates R34, blue indicates R50, and yel-

low indicates R64. Statistical tools used are as in Fig. 4.
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time), 13 and 14 September 2018. Figures 8b and 8c shows

SAR–SFMR collocated measurements and the correspond-

ing SAR- and SFMR-derived wind profiles for the first out-

lier. Collocated transects exhibit a significant difference in

the wind speed variation close to the eyewall (see within red

circle in Fig. 8b), where SFMR measured a rain rate larger

than 30 mm h21 and wind speed of 40 m s21. This inconsis-

tency between SAR and SFMR leads to a slightly different

shape for the wind speed profile, as displayed Fig. 8c, and

finally to a difference in the effective Rmax estimate. When

the two outliers are filtered out, correlation coefficient in-

creases, to become larger than 0.95, whereas RMSE and bias

decrease to about 3.5 km and 500 m, respectively. Although a

simple filtering of local maxima with respect to the TC center

distance would have removed these outliers, we considered

them to further illustrate possible rain impact on C-band

derived wind speed.

c. Best track error estimates

Assuming SAR-derived parameters as reference values, we

further analyze TC inner (Vmax and Rmax) and outer (wind

radii) core parameters as given by best track with respect to

storm category. Figure 9 displays the mean values from SAR

and best track for each of these TC parameters as a function of

storm category. The related uncertainty (top panels) and mean

absolute error (MAE) (bottom panels) are indicated for both

inner (left panels) and outer core parameters (right panels).

Most SAR- and best track–derived TC parameters (i.e.,

Vmax and wind radii) have similar trends in mean values and

MAE with respect to intensity (with exception of TS/TD).

FIG. 7. Comparison of best track and SAR-derived Rmax. Markers and statistical tools are similar to the Fig. 4

convention. Comparison (a) before and (b) after treatments of flagged values. Statistics for solely cases.33 m s21

are also included.

FIG. 8. SFMR- and SAR-derived effective Rmax. (a) SFMR-derived effective Rmax vs SAR-derived effective Rmax. Color code

indicates SFMR maximum wind speed. Outliers are within the purple ellipse. (b),(c) Case study of Florence TC on 13 Sep 2018 corre-

sponding to one of the two outliers. (b) Collocated SAR–SFMR measurements along the transect. (c) SFMR- and SAR-derived wind

speed profiles and corresponding Rmax.
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Significant differences are found for Rmax mean values

and MAE for TD/TS cases and CAT-4/-5 TCs, with Rmax

value uncertainties larger than 30%. This confirms the

disagreement between SAR and best track Rmax, previ-

ously discussed.

For wind structure parameters describing the TC outer core,

uncertainties are found to increase with the prescribed wind

speed. R64 uncertainties are the largest (peak about 25%),

followed by R50 and R34 uncertainties, regardless the TC in-

tensity. R50 and R64 wind radii uncertainties seem to be storm

category dependent, with larger discrepancies obtained for

intermediate categories. In particular, R50 and R64 uncer-

tainties peak for CAT-3 TC, with values reaching about 20%

and 25%, respectively. The analysis of best track used in this

study further reveals more variability for R50 and R64 from

one time step to another for CAT-2 or CAT-3 TCs. This could

explain the larger uncertainties when compared to SAR

estimates.

Remarkably, all TC parameters suffer from large MAE and

uncertainties for TD/TS cases, whereas only Rmax parameter

uncertainties rise for major TCs. This deficiency linked to the

complexity of weak systems is addressed in section 4. A sig-

nificant difference in Rmax trends is also found, with a clear

plateau for the highest category of best track analysis. It may

be indicative of a specific issue regarding Rmax estimates

for major TCs. As already mentioned, this apparent lack of

sensitivity for Rmax may be due to the low- to medium-

resolution observations used to estimate these parameters as

well as operational constraints and/or procedures. Our analysis

shows differences up to 30 km when SAR-derived Rmax are

about 20 km (see Fig. 6c). Such cases will be further discussed

in section 4.

Our SAR-based results are consistent with previous studies:

a range of 10%–40%were found by Knaff and Sampson (2015)

and Sampson et al. (2017) for wind structure, and 10%–20% by

Torn and Snyder (2012) and Landsea and Franklin (2013) for

intensity. After averaging estimates over all categories, we end

up with the following MAE and uncertainties values for TC

parameters: Vmax: [4.8 m s21, 9.5%]; Rmax:[15 km, 32%];

R64: [14 km, 22%]; R50: [20 km, 19%]; and R34: [29 km, 17%].

4. Discussion

a. Best track–SFMR–SAR comparison limitations

Although comparisons between best track– and SAR-

derived parameters reveal an overall high consistency, both

Vmax and wind radii parameters can display noticeable

scatter, of about 20%. High-resolution SAR acquisitions us-

ing both co- and cross-polarizations are still recent. Current

uncertainties governing the relationship between radar pa-

rameters and wind speed or rain, as well as possible calibra-

tion issues, will certainly improve with increasing systematic

FIG. 9. Best track errors and uncertainties estimated from SAR-derived values for each TC parameter. (left)

Inner core (Vmax: black; Rmax: magenta) and (right) wind radii (R34: green; R50: blue; R64: yellow). (a),(b)

Histograms of TC parameters uncertainties for each intensity category. Uncertainties are computed as MAE

(category)/mean (category). (c),(d) Mean category values are displayed for SAR (dashed colored lines) and best

track (solid colored lines); shaded areas outline best track errors computed as mean absolute error (MAE).
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acquisitions. The Vmax difference could be the result of (i) the

wind field variability, a SAR acquisition being instantaneous,

(ii) the convention used to define Vmax, best track estimates

relying on 1-min average wind whereas instantaneous SAR

measurements are analyzed at 3 km resolution, and (iii) the use

of indirect methods (e.g., Dvorak) to estimate Vmax values in

best track analysis. For wind radii, best track estimates are

probably affected by the use of low- to medium-resolution

sensors and sensors that signals saturate at higher wind speeds.

High-resolution SAR estimates are certainly adequate to as-

sess the sensitivity of TC parameters to resolution, as different

spatial resolutions can be considered. As for Vmax, the impact

of the wind field variability within 6 h on wind radii estimates is

also certainly a limitation for direct comparisons. The large

scatter and associated uncertainties obtained for Rmax, to-

gether with the remarkable consistency observed between

SAR and SFMR, indicate the need for establishing more ro-

bust and homogeneous methodologies for this parameter.

Specific comparisons are shown in Fig. 10, further illustrating

complex cases and sources of disagreements between SAR and

best track analysis.

As shown Figs. 7 and 9, most of the differences regarding the

TC wind structure are found for tropical storms or tropical

depressions, which exhibit the largest uncertainties compared

to other storm categories (see Fig. 9). When only considering

wind radii corresponding to TD or TS categories (Vmax ,
33 m s21), the scatter index and the RMSE obtained for R34

increase from 22% to 40% and from 39 to 50 km, respectively,

and those obtained for R50 increase from 25% to 40% and

from 27 to 32 km, respectively. Weaker systems tend to be

more asymmetric in their complete radial profile, even in low

shear environment (Klotz and Jiang 2017), with a less orga-

nized circulation (Fig. 10). TD/TS wind radii (Knaff and

Sampson 2015) estimates are thus more difficult to estimate

than for hurricanes/typhoons. In addition, at this intensity

stage, TD/TS likely do not have an eye structure (Vigh et al.

2012), a constraining situation for our SAR-based methodol-

ogy. When existing, the eye is often asymmetric (Li et al.

2013), a limiting factor for IR-based techniques that require

symmetrical eyes (Mueller et al. 2006; Kossin et al. 2007). Such

techniques are also sensitive to the cirrus darkening effect,

especially in weak eyes or developing eyewall situations

(Velden et al. 2006). Regarding the present dataset, seven

weak cases (6 TD and 1 TS) were discarded due to unclear eye

structure (seeMadeline on Fig. 10a). Another noteworthy case

corresponds to an unexpected situation, with a high wind area

FIG. 10. Mosaic of six specific tropical systems from SAR acquisitions, represented on a polar grid centered at each TC origin. (a),(b)

Madeline and Ivette, two weak systems eliminated from analysis due to eye location issues. (c),(d) Two complex structures: (c) Karl, a

disorganized TD and (d)Megi, a double-eyewall case. (e),(f) Two intense cases with discrepancies between SAR and BTK: (e) Hector, an

open-ocean case without any SFMRmeasurements, best track–limiting case, and (f) Patricia, a coastline case with SFMRmeasurements

(not for this snapshot), SAR-limiting case. The beam seam effect (signal jump) observed in some panels is induced by the noise floor

variation according to incidence angle.
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measured within the eye region (see Ivette on Fig. 10b).

Although likely correct, this case is also removed for the

present analysis. After screening, 52 TDs/TSs are included in

this study (Fig. 3). The SAR capabilities to examine this range

of intensity was already demonstrated in previous studies

(Zhang and Perrie 2012). Wind structure can then be used to

initialize models to help improving forecast in terms of inten-

sity (Bender et al. 2017), tracks (Kunii 2015) and TC structure

(Wu et al. 2010). Lowwind speed systems are thus important to

precisely describe.

Complex structures also occur during ERC events, for which

two distinct wind speed maximum regions can coexist, leading

to the existence of double Rmax. During the ERC process, TC

goes through significant structural and intensity changes of the

inner core, with a widening and phases of weakening and

reintensification (Maclay et al. 2008; Kossin and Sitkowski

2012). For instance, Typhoon Megi (2016, WP) encountered

this situation, with a first 25 km Rmax ring and a second one at

60 km (Fig. 10d), as observed by SARmeasurements. In such a

case, significant differences on Rmax estimates can be ex-

pected if the two applied methods do not pick the same Rmax.

Beyond the comparison, an ERC is a critical situation for

forecasters, as it changes the TC size with a potential large

increase in integrated kinetic energy (Sitkowski et al. 2011).

Wind structure is also of paramount importance to assess storm

surge (Irish et al. 2008) and many other applications. Rapid

intensification may also follow after eyewall replacement

[Andrew in 1992; Landsea et al. (2004)], such rapid changes

remain challenging for forecasters and those preparing the best

track (Leroux et al. 2018). In total, our dataset includes eight

observations of ERC, and SAR observations are particularly

suitable to infer the doubleRmax at finescale (see Fig. 10d) and

to possibly guide on the onset or the reached phase of the ERC.

This may help forecasters to reduce errors associated with such

event (Kossin and DeMaria 2016).

It is also noteworthy that the inner-core wind structures of

major TCs are challenging to estimate.When evolving over open

ocean, and lacking aircraft data, best track analyses heavily rely

on satellite information (Landsea and Franklin 2013). During

intensification, Rmax generally tends to decrease, a limiting

situation for most of low- to medium-resolution sensors.

Hector was one of these small (Rmax 5 16 km) intense sys-

tems, developing within the eastern Pacific in 2018 (see

Fig. 10e). During its second intensification phase (on 9/10

August 2018), Hector’s inner core shrank, and this was not

captured by the best track. Rmax was evaluated at 46 km, a

large overestimation of about 30 km (200% error). Similar

examples can be found–notably in east Pacific basin, such as

hurricane Ignacio (3 September 2015), for which a 20 km un-

derestimation was observed. Those significant structure dis-

crepancies can lead to dramatic change in IKE (Powell and

Reinhold 2007), and the upper ocean response (Ginis 2002;

Kudryavtsev et al. 2019b). Vmax discrepancies also occur

during Rapid Intensification (RI) or Rapid Decay (RD)

events. For instance, Typhoon Jebi (2018) experienced an ex-

plosive increase of 25m s21 in 24 h. In this particular case, up to

10 m s21 intensity difference is reached between the two

sources. Best track analysis may fail due to strong intensity

variations (2.5 T maximum; Velden et al. 2006), for which

smaller TC cases tend to be more affected (Xu and Wang

2015; Carrasco et al. 2014; Leroux et al. 2018), possibly

combined with the best track binning effect. To note, one

limiting situation was found using SAR observations with

Hurricane Patricia in 2015 (Fig. 10). Analysis of this pow-

erful TC benefited from temporal and spatial sampling from

aircraft, surface and satellites (Rogers et al. 2017). Ocean

surface wind speeds, with values as high as 90 m s21 were

measured. SAR Vmax estimates only reached 72 m s21, but

Rmax corresponded well with observations with the smallest

radius of the present dataset (7 km). Since wind retrievals

were performed on a 3 km resolution grid, the full peak in-

tensity may not have been well resolved. Regardless of this

specific case, SAR seems to address most situations to

complement the quality of TC parameter estimates. This is

especially true for highly variable situations, where 50% of

the values exceeding MAE of both Vmax and Rmax in

Figs. 4b and 7b are defined as fast-evolving cases (including

ERC situations). The nature of the highly variable cases is

the most limiting factor for SAR–best track comparisons. It

is also noted that half of the total adjustments for Vmax,

section 3a, were performed for best track estimates identified

as highly variable situations for which comparison can be

particularly tricky (interpolation failure). For these situa-

tions, objective analyses merging microwave and infrared

satellites could be used to further investigate these discrepancies

between SAR and best track. Those methods include the

Satellite Consensus (SATCON; Herndon et al. 2012) product

developed by the Cooperative Institute for Meteorological

Satellite Studies (CIMSS), or the Multiplatform Tropical

Cyclone Surface Wind Analysis (MTCSWA; Knaff et al.

2011) system by the Cooperative Institute for Research in the

Atmosphere (CIRA). In particular, because they combine

different satellite data sources, they have higher temporal

resolution than best track allowing for a more accurate TC

intensity variability description, they may provide an inter-

esting complement for further comparisons.

Finally, we also evaluate the impact of the SFMR processing

method. As expected from Sapp et al. (2019) and the example

presented in section 2c, no matter the product considered, a

great consistency is found between SAR and SFMR data.

Regarding wind speed parameter, the RMSE and correlation

remain very similar, whereas the largest differences are obtained

for the bias. Correlation coefficients are 0.93 and 0.92 for

AOML/HRD and NOAA/NESDIS processing methods, re-

spectively. RMSE are 4.32 and 3.86 m s21 for AOML/HRD and

NOAA/NESDIS, respectively. Values for bias are different:

1.49 and 20.24 m s21 for AOML/HRD and NOAA/NESDIS,

respectively. Regarding Rmax parameters, differences are neg-

ligible. When comparing the two processing versions, correla-

tion is higher than 0.90, RMSE lower than 4 km and a bias

around 0 km. Further comparing the two SFMR processing

versions is clearly out of the scope of this study and the choice of

SFMR product does not impact our conclusions on SAR–best

track comparisons. In particular the main result concerns Rmax

parameter for which the consistency between SAR and best

track is dramatically improved when SFMR measurements are
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available. And the processing version of SFMR does not impact

the location of the strongest wind speeds along the transects. In

contrast, the SFMR impact on SAR–best track comparison for

Vmax parameter is found to be negligible.

b. Rain impact on SAR

Although SARmeasurements appear relevant to provide

guidance in many limiting situations, specific processing

steps are still required to provide qualified estimates (see

section 3). Specifically, a special method was developed to

remove rain effects for wind estimates. This is important

because rain can cause both increase and/or decrease of

C-band backscatter signals (Katsaros et al. 2000; Alpers

et al. 2016). This results from either modification of the

ocean surface waves, damping and enhancement of the

roughness by rain droplets impinging the surface, or from

direct interactions with hydrometeors (scattering or at-

tenuation) in the atmosphere column along the path of the

electromagnetic waves.

For the present database, rain rate estimates are sys-

tematically inferred from IMERG product, collocated in

time and space with SAR acquisitions. The rain intensity

for a given TC is defined by the mean rain rate (mm h21),

estimated on a 610 km ring around SAR-derived Rmax. In

the case of CAT-1 and higher TC, heavy rain occurrence is

defined by mean rain rates larger than 30 mm h21. This

threshold is lowered for TD/TS to 10 mm h21. Applying

these criteria, 70 (42%) cases correspond to heavy rainfall,

and 23 of them (1/3) were found to be significantly affected

by rain. As briefly mentioned in section 3, a case is con-

sidered significantly affected by rain, if an anomalous peak

is found in the SAR-derived Vmax azimuthal distribution,

and can be associated to heavy rainfall as indicated by

IMERG. To help distinguish several maxima, we use the

Jelesniansky description [Jelesnianski (1966), detailed in

Pan et al. (2016)], taking into account the TC translation in-

duced Vmax asymmetry.

When applied, this procedure improves consistency between

SAR and best track (Fig. 4a). However, four remaining cases

exhibit anomalous peaks in the Vmax azimuthal distribution,

for which the heavy rainfall criterion derived from IMERG is

not met. Figure 11 illustrates one of these cases, Hurricane

Michael (2018). In Michael, IMERG measurements barely

reach 25 mm h21. In contrast, the high reflectivity measure-

ments by the KEVX radar (from NEXRAD network) around

the eyewall tend to indicate heavy rainfall [.50 dbZ, corre-

sponding to about 80 mm h21 using Z(R) relation from Fulton

et al. (1998)] that was not captured by IMERG. This case

demonstrates the limitation of using medium-resolution rain

products such as IMERG, for both time and space sampling,

30 min and 0.18, respectively. In fact, rain rate is often related

with maximum wind intensity (Lin et al. 2015), and its vari-

ability (Rodgers and Adler 1981) with maximum activity

generally located in the inner TC core (Lin et al. 2015; Jiang

et al. 2008). In this deep convective region, the diameter of rain

cores can be smaller than IMERG resolution (~5–10 km), with

rain rate exceeding 20mmh21 (Begum andOtung 2009). High-

resolution weather radar (1 km) can capture this activity.

Among the 17 cases collocated with NEXRAD, four addi-

tional heavy rain cases like the Michael case were found. 70%

of the adjusted SAR-derived Vmax estimates correspond to

cases with impacting heavy rainfall, yielding mean adjustments

of 6.2 m s21 (4.5 m s21 for hurricanes and 8.1 m s21 for TDs and

TSs). This confirms that intense rain is the most limiting factor

to retrieveVmax fromC-band SARmeasurements. Interestingly,

SAR-derived Rmax are generally quite insensitive to rain issues

for hurricane-force situations where rain-induced ambiguities

are close to the region ofmaximumwinds and rather symmetric.

However, for five TDs, SAR backscattered signal enhancement

associated with outer rainband activity, can compete with the

FIG. 11. Comparison of two rain products for the Hurricane Michael case on 10 Oct 2018. (a) Cross-polarization

signal of Sentinel-1Awith rain-rate contours of GPM IMERG (mm h21). (b) NEXRADbase reflectivity converted

to mm h21.
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weak TD wind signature (e.g., Karl in Fig. 10). Still, the global

impact on Rmax determination is generally minimal.

c. Discrepancies among TC basins

Due to its global coverage and unique high resolution, SAR

can also assess TC parameter variability and document the

best track quality homogeneity for both inner and outer core,

among different ocean basins. TC characteristics regarding

size, intensity and trajectory (Chavas et al. 2016), as well as

best track quality (Landsea and Franklin 2013), also depend

on ocean basin. In particular, improved performances are

achieved when aircraft reconnaissance and SFMR measure-

ments are available (Landsea and Franklin 2013; Sampson

et al. 2018). Figure 12 shows Vmax and Rmax comparisons as

function of basin location and SFMR coverage. TD cases are

not considered for this interbasin comparison, as none of

them benefited from SFMR observations. To note, unlike in

section 3, we do not compare direct SFMR information but

rather best track analyses that are influenced by SFMR

measurements. Inherent smoothing in the best track analysis

may slightly reduce the correlation presented in Fig. 8. Still

the benefit of using SFMR is obvious for both Vmax and

Rmax parameters (see Fig. 12) with improved agreement

between SAR and best track when SFMR observations are

available. As listed in Table 1, this especially applies for R50,

R64 and Rmax wind structure parameters. Only R34 pa-

rameters are found to be very similar. This certainly reflects

the use of scatterometer measurements to improve R34 es-

timates for best track (Brennan et al. 2009).

Regarding performances for each individual basin (Fig. 12),

the North Atlantic basin logically experiences higher consis-

tency with SAR (R . 0.90), thanks to SFMR observations.

Similar performances for TC intensity are obtained in the east

Pacific (R 5 0.91). Overall, and despite a slight decay for non-

U.S. basins, Vmax performances are found very robust for all

basins. Significant discrepancies between basins primarily exist

for Rmax. More specifically, east Pacific undergoes the stron-

gest normalized bias (216%). This is likely associated to the

prominence of smaller storms (Chavas et al. 2016; Chan and

Chan 2012) combined with a general lack of aircraft data in this

basin. In addition, those small systems appear to experience

higher RI/RD rate (Carrasco et al. 2014; Xu and Wang 2015),

making TCs developing in the east Pacific more temporally

variable. For the west Pacific basin, a larger distribution of TC

sizes (Chavas et al. 2016), together with the largest systems

observed (Knaff et al. 2014) is expected. This, combined with

an absence of SFMR measurements, may explain the large

RMSE and scatter in estimates. Likewise, the Southern

Hemisphere (SH) shows large scatter. However, the small

number of available cases in the present dataset prevents any

strong and definitive conclusions. To note, specific adjust-

ments are applied to the initial Dvorak analysis scheme by

each RSMC, with respect to their measurements capabilities

(Velden et al. 2017) and performances could be different

than those obtained here as we are only using the JTWC

analysis. Furthermore, Southern Hemisphere never benefits

from SFMR measurements. This can explain the low consis-

tency achieved for Vmax.

5. Conclusions and prospects

Thanks to an unprecedented large dataset, consisting of

161 acquisitions from three different SAR instruments (RS2,

S1A/B), SAR observations are shown to not only explore the

full spectrum of TC intensities, but also to precisely detail TC

structure parameters from wind radii well removed from the

eyewall region to the location of the maximumwind and Rmax

in small TCs. Rmax is a parameter of paramount importance

for the assessment and forecasting of ocean-atmosphere in-

teractions, damages (Powell and Reinhold 2007), storm surge

FIG. 12. Interbasin comparison of inner-core parameters. As in Figs. 4b and 7b, but with respect to basin location.

Cases with simultaneous SFMRmeasurements are framed with green diamond. Statistics are added for each basin.
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(Irish et al. 2008), and also to initialize parametric models

(Holland 1980; Wood et al. 2013; Willoughby and Rahn 2004).

In addition to the potential to resolve the complete wind field

(Fig. 1), SAR measurements are found fully consistent with

SFMR (R . 0.9). SAR acquisitions can be performed every-

where, independent of TC basin and best track. Although an

acquisition scheme methodology is required (see section 2),

comparisons (see section 3) highlight the ability of SAR to

routinely guide analysis, especially in limiting situations, where

significant variability is noticed and jeopardize best track es-

timates (50% of discrepancies).

As previously reported (Horstmann et al. 2013, 2015), SAR

signals still require special processing steps and screening be-

fore being used to infer TC parameters, especially Vmax esti-

mates made in heavy rain conditions. Here we have shown that

heavy rain possibly account for 20% of observed scatter of

Vmax (Fig. 4a). More dedicated efforts are certainly required,

with use of IMERG products, GPM’s satellite measurements,

weather ground-based radar, or other satellite-based product

such as MIMIC (Wimmers and Velden 2007) to provide best-

qualified Vmax estimates. Following the steps detailed in this

paper, high-quality Vmax estimates can be obtained with re-

spect to both SFMR (R 5 0.91) and best track (R 5 0.92).

Unlike Vmax, Rmax estimates appear only weakly affected by

heavy precipitation, leading to almost perfect agreement with

SFMR (R5 0.98). More significant discrepancies in Rmax and

Vmax comparisons with best track occur when storms are

evolving quickly or when there are double Rmax structures

(Fig. 7). We also observe that wind radii uncertainties increase

with TC intensity (Fig. 9). Since temporal variability has an

impact on best track wind structure estimates (50%), the lack

of more direct methods seems to be the most impactful to the

results of our study. These impacts are highlighted by com-

paring performances over different TC basins: highest scores

are obtained for the Atlantic basin, which benefits from good

SFMR coverage (70% of our TC cases). Likewise, R34 was

found very consistent regardless of TC basins or SFMR avail-

able observations (Table 1), which highlights the real benefit of

using scatterometer measurements in best track analysis.

This apparent reliance on scatterometry implies that TC

wind structure analyses could immediately benefit from the

new capabilities of the recent generation of rain-free L-band

passive radiometer sensors: SMAP/SMOS that depict TC, still

at the low resolution of 50 km, but with a wide swath and twice-

daily temporal coverage (Reul et al. 2016, 2017). In such a

context, SMAP measurements have been recently added to

ATCF (JTWC 2017). It has been shown that the coarse reso-

lution of these observations generally precludes direct esti-

mation of the inner-core parameters for TCs with Rmax less

than 40 km (most of cases $CAT-2; see Fig. 9). But these

satellites can provide very accurate wind radii that have been

found to be in good agreement with both SAR (Mouche et al.

2017; Zhao et al. 2018) and SFMR (Reul et al. 2016; Meissner

et al. 2017) estimates. Today, the SMOS/SMAP constellation,

possibly augmented by AMSR-2 measurements, combined

with the unique capability of SAR to inform the eyewall re-

gion, offer quite unique opportunities. In addition, the

CYGNSS constellation with its high temporal resolution and

insensitivity to high rain rates (Ruf et al. 2016; Morris and Ruf

2017) can also be an asset to complement SAR measure-

ments, especially in situation of heavy rain conditions.

As shown here, improved TC parameter estimates can be

robustly derived using SAR winds corrected for heavy rain-

fall to lower errors associated to more indirect and subjective

analysis methods. However, to date, no MDA-operating

RadarSat-2 or Copernicus/ESA-operating Sentinel-1 ensures

any operational service to systematically acquire data over TC

and then process and disseminate them into wind field in near–

real time. The new version of 3-hourly IBTraCs (Knapp et al.

2018) and annual best track preparation at NHC and JTWC

may benefit from this growing combined capability using these

different sensors in the future. It will bring finer description of

TC evolution and wind field variability that should directly

benefit operational, applied and/or research communities.

Presently, best track uncertainties appear to largely depend on

the availability of SFMR information (Table 1), leading to

large discrepancies between basins (Fig. 12). Our results have

also shown that best track errors are in agreement with pre-

vious studies (Torn and Snyder 2012; Landsea and Franklin

2013; Knaff and Sampson 2015): 10% uncertainties for inten-

sity and 20% for wind radii (section 3). More importantly,

uncertainties for Rmax, which we found to be 32%, were not

previously assessed. Clearly, SAR observations can thus guide

poststorm analysis of this important parameter, which is not yet

reanalyzed as part of the best track process. In a future study,

SATCON (Velden and Herndon 2020) and MTCSWA analy-

sis products may be considered to extend this work. Their

higher temporal resolution and the use of recent methods, like

specific microwave algorithms (Wimmers and Velden 2016)

can be an alternate source of comparison, notably for Rmax

and complex situation such as ERC event. Furthermore, these

methods are generally based on 89–91 GHz microwave radi-

ometers that provide elevated eye features and midlevel winds

(MTCSWA). A joint use of C-Band SAR and 89–91 GHz

microwave radiometers could allow estimates of the vertical

eyewall slope and possibly lead to additional guidance in the

surface adjustment to be performed. Finally, SAR measure-

ments can also document the TC eye dynamics (Li et al. 2013),

and provide high-resolution details of the nature of the TC’s

wind field. Thanks to the growing database, future investiga-

tions will be conducted to more carefully analyze the TC’s

finer-scale wind structures, to not only provide details of the

TABLE 1. Mean absolute errors and uncertainties in parentheses of each TC parameter according to presence of SFMR information.

Vmax (m s21) Rmax (km) R34 (km) R50 (km) R64 (km)

BTKSFMR 4.0 (8%) 6.0 (18%) 26.5 (15%) 12.3 (12.8%) 9.5 (15%)

BTKNoSFMR 5.1 (13%) 16.5 (33%) 30.0 (17%) 21.6 (20%) 16.0 (26%)
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radial and azimuthal wind variations, but details of the or-

ganization of large eddies that occur at various spatial scales

(Foster 2005) within the TC.
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