




# EXAMPLES OF DATA AND TRAINING DISTRIBUTION TO UTILIZE UNDER NORMAL AND UNUSUAL CIRCUMSTANCES

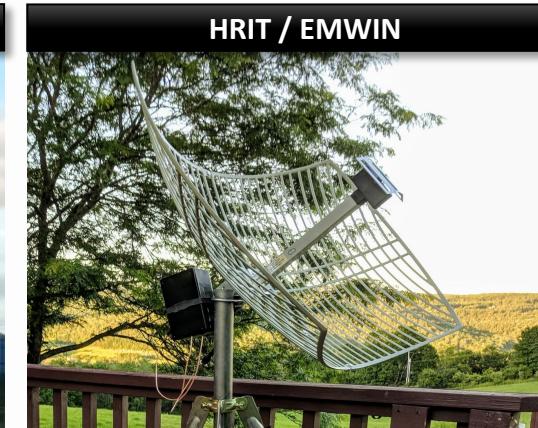
WMO Vlab and NOAA Train the Trainers Workshop - 6 August, 2022

Seth Clevenstine

[seth.clevenstine@noaa.gov](mailto:seth.clevenstine@noaa.gov)  
NOAA

Diego Souza

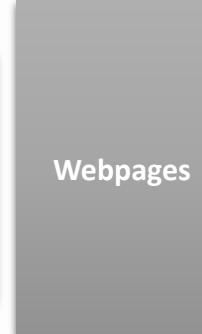
[diego.souza@inpe.br](mailto:diego.souza@inpe.br)  
INPE


Marcial Garbanzo

[marcial.garbanzo@ucr.ac.cr](mailto:marcial.garbanzo@ucr.ac.cr)  
University of Costa Rica

- **Summary of Data Access and Distribution Mechanisms**
- **Advantages and Disadvantages**
- **GEONETCast-Americas**
  - Architecture and Possibilities
  - Portable Stations
  - Training, Admin and Charter Channels
  - International Disaster Charter Case Study
  - Latencies
- **IDD**
- **Custom Data Processing**

# Examples of Data Access and Distribution Mechanisms


Direct  
Readout /  
Rebroadcast



Cloud  
Services /  
Internet



Archive



# Data Access Mechanisms: Advantages and Disadvantages

## GRB - GOES REBROADCAST



### Pro's

- Highest availability and lowest latency for GOES users
- Contains all 16 Level 1b ABI radiances in native spatial and temporal resolution
- GLM 20-second data and Space Weather Products also available
- Free CSPP software available for users to download

### Con's

- Ground station costs are expensive  
Requires significant storage capabilities to obtain all data
- Only contains data from the GOES satellite of interest, no other satellite data available
- Does not contain any Level II data except GLM, requires further processing
- CSPP software doesn't cover all Level II ABI data that NESDIS produces via the Product Distribution and Access system

## HIGH RATE DATA - HRD



### Pro's

- Highest availability and lowest latency for JPSS users
- Fine spatial resolution
- Includes the full set of science and calibration data from all the mission instruments
- Free CSPP software available for users to download

### Con's

- Ground station costs are expensive  
Requires significant storage capabilities to obtain all mission data
- Only contains data from the JPSS satellite downlink of interest, no other satellite data
- Raw data requiring further processing
- CSPP software doesn't cover all Level II data that NESDIS produces via the Product Distribution and Access system

# Data Access Mechanisms: Advantages and Disadvantages

## GEONETCAST-AMERICAS (GNC-A)



## BIG DATA PROJECT - CLOUD SERVICES



### Pro's

- Alternative satellite source for GOES, JPSS and more: 16 bands / 19 x Level II Products
  - GOES-West / METEOSAT data
  - JPSS Imagery and Products
  - GCOM-W1 Imagery and Products
  - LEO Blended Products, ISCS and more
- Standard off-the-shelf components (lower costs)
- Portable stations
- Custom broadcast channels
- Regional data providers

### Con's

- Broadcast Product Latency: Data Providers > Uplink > Rebroadcast > Users
- Possible Product Outages (PDA)
- Modified Spatial and Temporal Resolutions in some cases
- Broadcast Prioritization - Some products arrive first
- The maintenance can be more frequent

### Pro's

- Historical and NRT data access
- Multiple datasets (Imagery and Products)
- Minimum latency for data availability
- There's no cost for accessing data

### Con's

- Good internet bandwidth required
- Possible Product Outages (PDA)
- There may be costs for data processing directly in the cloud

# Data Access Mechanisms: Advantages and Disadvantages

## UNIDATA



**unidata**

### Pro's

- Many datasets available (Satellite Imagery and Products, NWP, Radar, etc.)
- Redundancy (e.g.: Different GRBs as source)
- There's no cost for accessing data

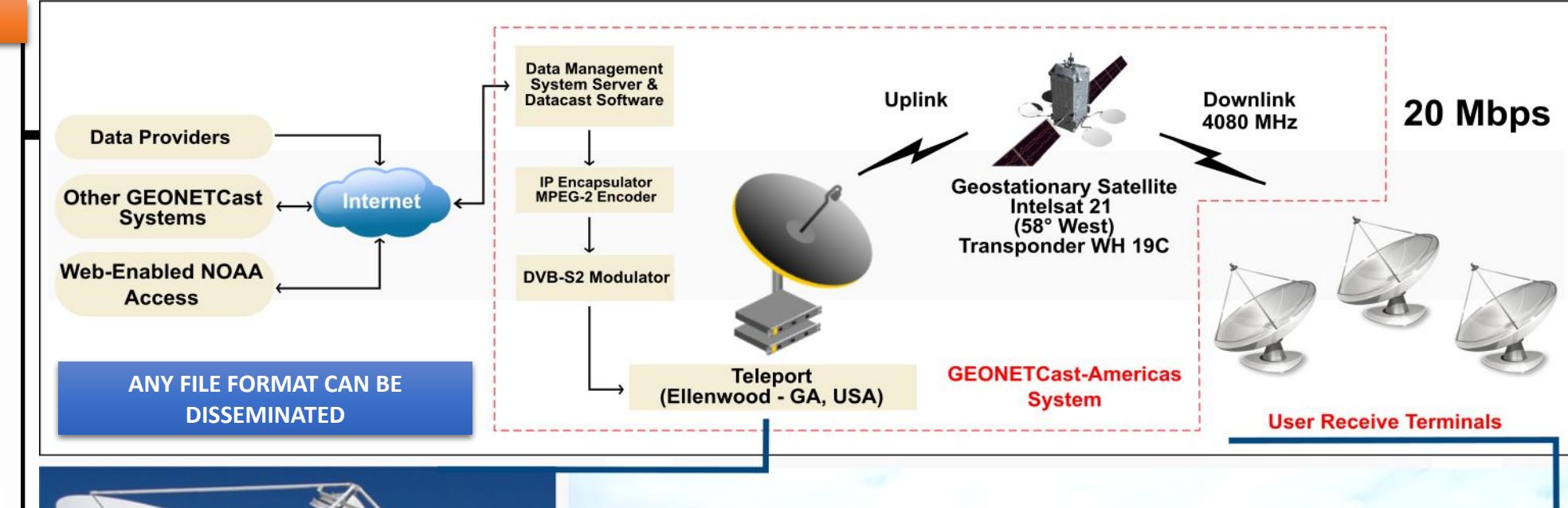
### Con's

- Good internet bandwidth required

## LONG TERM ARCHIVE



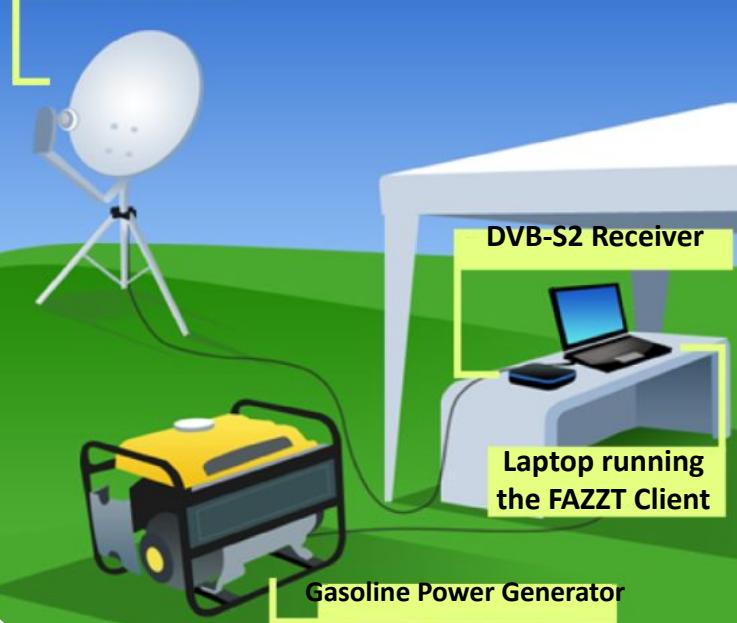
### Pro's


- Historical data access
- Complete NOAA and EUMETSAT databases
  - GOES series, POES, JPSS, JASON, DMSP, MSG, METOP, Copernicus and many more
- There's no cost for accessing data

### Con's

- Need to wait for FTP link
- Large datasets under request

# GEONETCast-Americas: Data Distribution and Possibilities

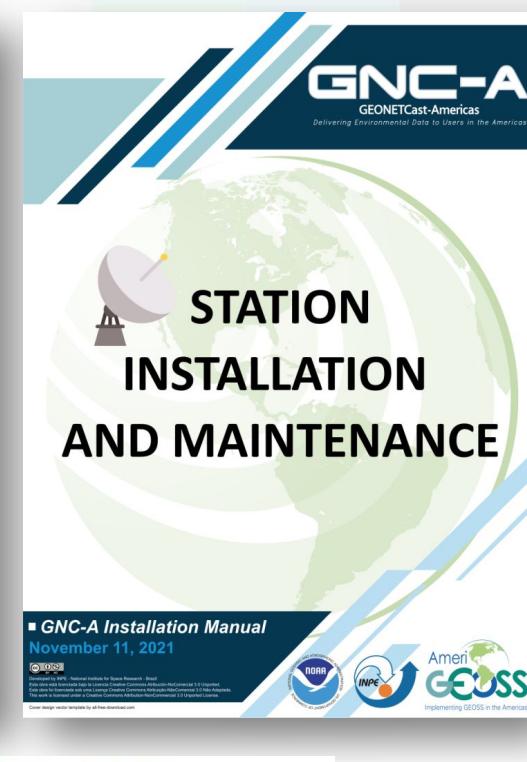

## GNC-A DATA PROVIDERS



# GEONETCast-Americas: Portable Stations

## MOBILE GNC-A RECEIVING STATION EXAMPLE

Portable antenna




- Only need power for computer and DVB-S2 receiver
- No internet connection needed
- Ability to add data to the broadcast on a ad-hoc basis
- Ability to add data prepared within or outside the ROI
- GNC-A is uniquely situated to support the delivery of disaster response information



# GNC-A: Training, Admin and Intl. Charter Channels

|  |                         |
|--|-------------------------|
|  | Name                    |
|  | CIMSS                   |
|  | CIRA                    |
|  | CONAE                   |
|  | EUMETSAT                |
|  | GOES-R-CMI-Imagery      |
|  | GOES-R-DCS              |
|  | GOES-R-GLM-Products     |
|  | GOES-R-Level-2-Products |
|  | GOES-R-RGB-Composites   |
|  | GOES-S-CMI-Imagery      |
|  | GOES-T-CMI-Imagery      |
|  | IMN-CostaRica           |
|  | Info&Admin              |
|  | INPE                    |
|  | Intl-Charter            |
|  | ISCS-ADMIN              |
|  | ISCS-ANLZ-CLIMATE       |
|  | ISCS-BUFR               |
|  | ISCS-FCAST              |
|  | ISCS-GRIB1              |
|  | ISCS-GRIB2              |
|  | ISCS-PIC                |
|  | ISCS-RADAR              |
|  | ISCS-SAT                |
|  | ISCS-SURFACE            |
|  | ISCS-UA                 |
|  | ISCS-WARN               |
|  | JPSS                    |
|  | MARN-El Salvador        |
|  | MSG-0degree             |
|  | NADM                    |
|  | NOAA-NESDIS             |
|  | RANET                   |
|  | Training                |
|  | USEPA                   |



## Index of /geonetcast/Info&Admin

| Name                                     | Last modified    | Size | Description |
|------------------------------------------|------------------|------|-------------|
| Parent Directory                         |                  | -    |             |
| <a href="#">GNC-A Product List</a> ->    | 2022-04-15 07:33 | 15M  |             |
| <a href="#">GNC-A_UGW_13_v2022-0_</a> -> | 2022-04-18 10:05 | 423K |             |
| <a href="#">GOESWKLY.SCHED</a>           | 2022-04-18 10:03 | 5.4K |             |
| <a href="#">WMO_Regional_Survey</a> ->   | 2022-04-18 10:05 | 96K  |             |

## Index of /geonetcast/Training

| Name                                      | Last modified    | Size | Description |
|-------------------------------------------|------------------|------|-------------|
| Parent Directory                          |                  | -    |             |
| <a href="#">SHOWCast Manual</a> - v2.. -> | 2022-04-17 11:25 | 9.9M |             |
| <a href="#">SHOWCast v 2_5_1(1)</a> ->    | 2022-04-17 11:28 | 368M |             |

## GEONETCast-Americas: International Charter Case Study

## EVENT

- Flooding

## LOCATION

- Northern Region of Brazil

## CHARTER ACTIVATION

- March 21, 2014

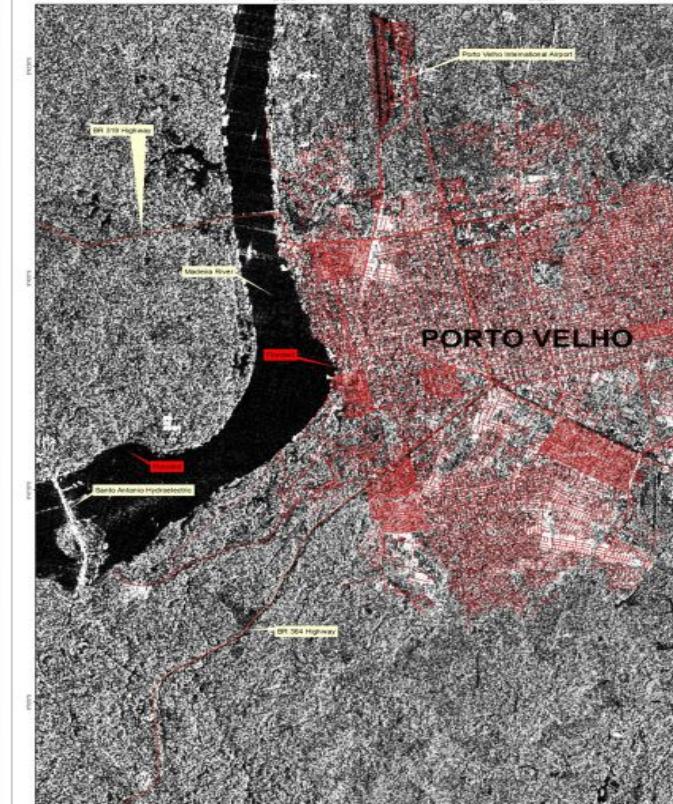
## REQUESTER

- National Center for Risk and Disaster Management (CENAD)

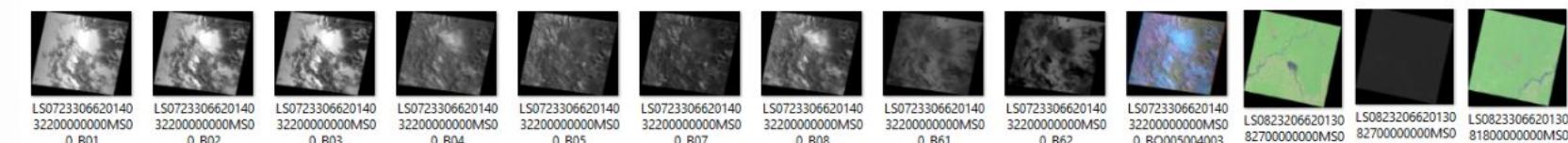
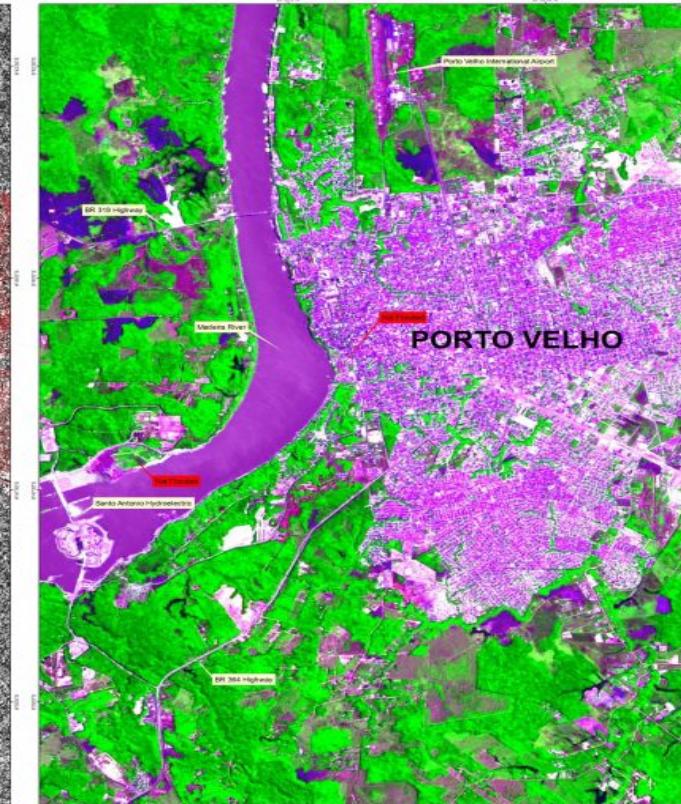
## PROJECT MANAGER

- INPE

## VALUE ADDED SPECIALIST


- INPE

## DATA



- Landsat-8 18/08/2013
- Landsat-8 27/08/2013
- Landsat-7 22/03/2014
- 3.7 GB

## BRAZIL - Porto Velho / RO - FLOOD - 25/MAR/2014 RISAT-1 IMAGE

RISAT-1 25/MAR/2014



LANDSAT 8 - Archive 27/AUG/2013



# GEONETCast-Americas: Latencies

| Product  | Best Latency | Worst Latency | Product                    | Best Latency | Worst Latency | Product                          | Best Latency | Worst Latency |
|----------|--------------|---------------|----------------------------|--------------|---------------|----------------------------------|--------------|---------------|
| Canal 01 | 02:27        | 05:02         | Cloud Top Height (ACHAF)   | 02:25        | 10:15         | Derived Stability Indices (DSIF) | 02:35        | 05:25         |
| Canal 02 | 01:57        | 03:50         | Cloud Top Temp. (ACHTF)    | 02:59        | 11:13         | Dowward SW (DSRF)                | 06:40        | 15:09         |
| Canal 03 | 02:32        | 05:09         | Clear Sky Masks (ACMF)     | 02:23        | 05:18         | Fire-Hot Spot Char. (FDCF)       | 01:33        | 01:40         |
| Canal 04 | 02:30        | 05:51         | Cloud Top Phase (ACTPF)    | 12:32        | 15:26         | Land Surface Temp. (LSTF)        | 02:37        | 03:40         |
| Canal 05 | 01:40        | 03:10         | Aerosol Detection (ADPF)   | 02:14        | 05:31         | Rainfall Rate (RRQPEF)           | 01:26        | 01:33         |
| Canal 06 | 01:46        | 03:46         | Aerosol Opt. Dep. (AODF)   | 02:22        | 06:15         | Reflected SW (RSRF)              | 05:38        | 05:45         |
| Canal 07 | 00:47        | 00:58         | Cloud Optical Depth (CODF) | 05:11        | 13:06         | Sea Surface Temp. (SSTF)         | 01:33        | 01:39         |
| Canal 08 | 01:24        | 01:28         | Cloud Particle Size (CPSF) | 05:28        | 13:42         | Total Precip Water (TPWF)        | 05:45        | 05:38         |
| Canal 09 | 00:47        | 00:48         | Cloud Top Pres. (CTPF)     | 02:26        | 10:15         | GOES-17 Band02                   | 02:52        | 05:16         |
| Canal 10 | 01:25        | 01:26         | Der. Winds B02 (DMWF-C02)  | 50:15        | 53:46         | GOES-17 Band09                   | 03:03        | 04:56         |
| Canal 11 | 02:13        | 03:51         | Der. Winds B07 (DMWF-C07)  | 51:49        | 52:03         | GOES-17 Band13                   | 03:11        | 05:10         |
| Canal 12 | 02:10        | 03:48         | Der. Winds B08 (DMWF-C08)  | 52:06        | 52:10         |                                  |              |               |
| Canal 13 | 00:39        | 00:47         | Der. Winds B09 (DMWF-C09)  | 52:06        | 52:10         |                                  |              |               |
| Canal 14 | 01:30        | 01:30         | Der. Winds B10 (DMWF-C10)  | 52:05        | 52:12         |                                  |              |               |
| Canal 15 | 01:29        | 01:30         | Der. Winds B14 (DMWF-C14)  | 51:52        | 50:29         |                                  |              |               |
| Canal 16 | 02:49        | 05:59         | Der. Winds B08 (DMWVF-C08) | 52:05        | 52:10         |                                  |              |               |

**Note: Statistics from 01 October 2021**

05:00 UTC

17:00 UTC

# Importance of Reduced Latencies and Optimized Processing

## Latencias Optimizadas

GOES-16  
Band-13

Animation Start / Stop:  
Keep

Prev. / Next:  
Keep

Anim. Mode:  
Keep

Anim. Speed:  
Keep

Image Size:  
Keep

Product:  
User Sector

Frame Shown:  
20

Draw  
Clear

SHOW Cast

GNC-A

GEONETCAST AMÉRICAS - FUERZA AÉREA ARGENTINA - GOES-16 Band 13 2021-11-01 15:10 UTC

15:10 UTC

Scan from 15:10 to 15:20 UTC

Channel 13 reception via GNC-A  
(between 39 and 47 seconds after the end of the GOES-R scan)

4.43 seconds to processing

Especificaciones de la computadora:  
Procesador Intel i5  
16 GB RAM DDR4  
240GB M2 SSD para OS

12:20 p.m.  
01/11/2021

Credits: Ricardo Valenti (Argentinean Air Force)

Calling Monitor Script

##### SHOWCAST MONITOR STARTED #####

Started at: 2021-11-01 12:20:46.992826

Processing the following file:  
E:\GNCA\_RX\GOES-R-CMI-Imagery\Band13\OR\_ABI-L2-CMIPF-M6C13\_G16\_s20213051510205\_e20213051519524\_c20213051520006.nc

Script used:  
E:\SHOWCast\_v\_2\_5\_1\_S\Miniconda3\envs\showcast\python E:\SHOWCast\_v\_2\_5\_1\_S\Scripts\process\_g1X\_bands\_sec.py

Script started.

HDF5:E:\GNCA\_RX\GOES-R-CMI-Imagery\Band13\OR\_ABI-L2-CMIPF-M6C13\_G16\_s20213051510205\_e20213051519524\_c20213051520006.nc"://

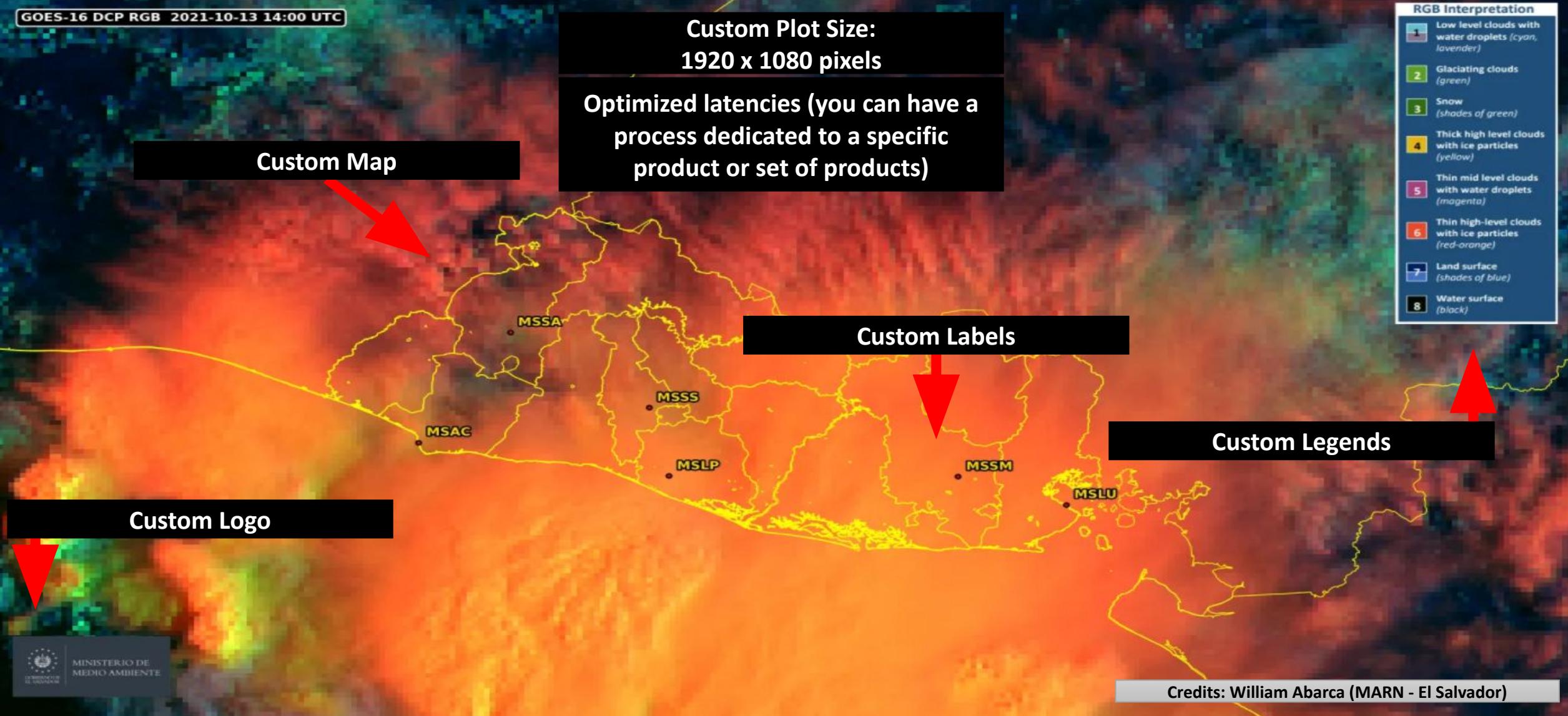
CMI

Remapping...

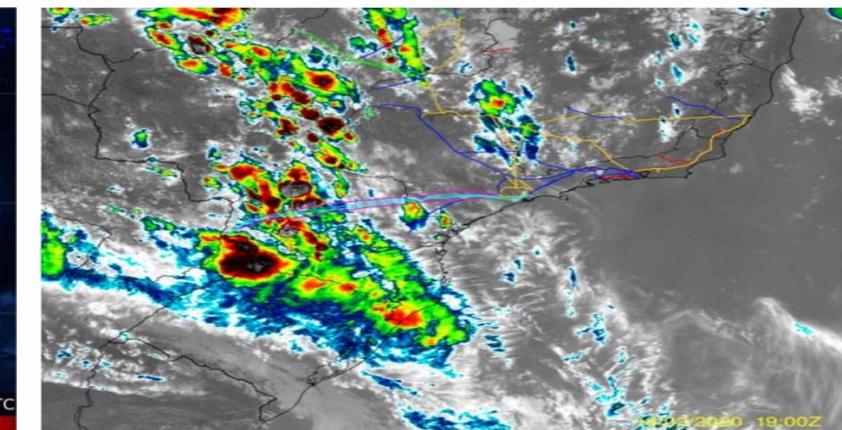
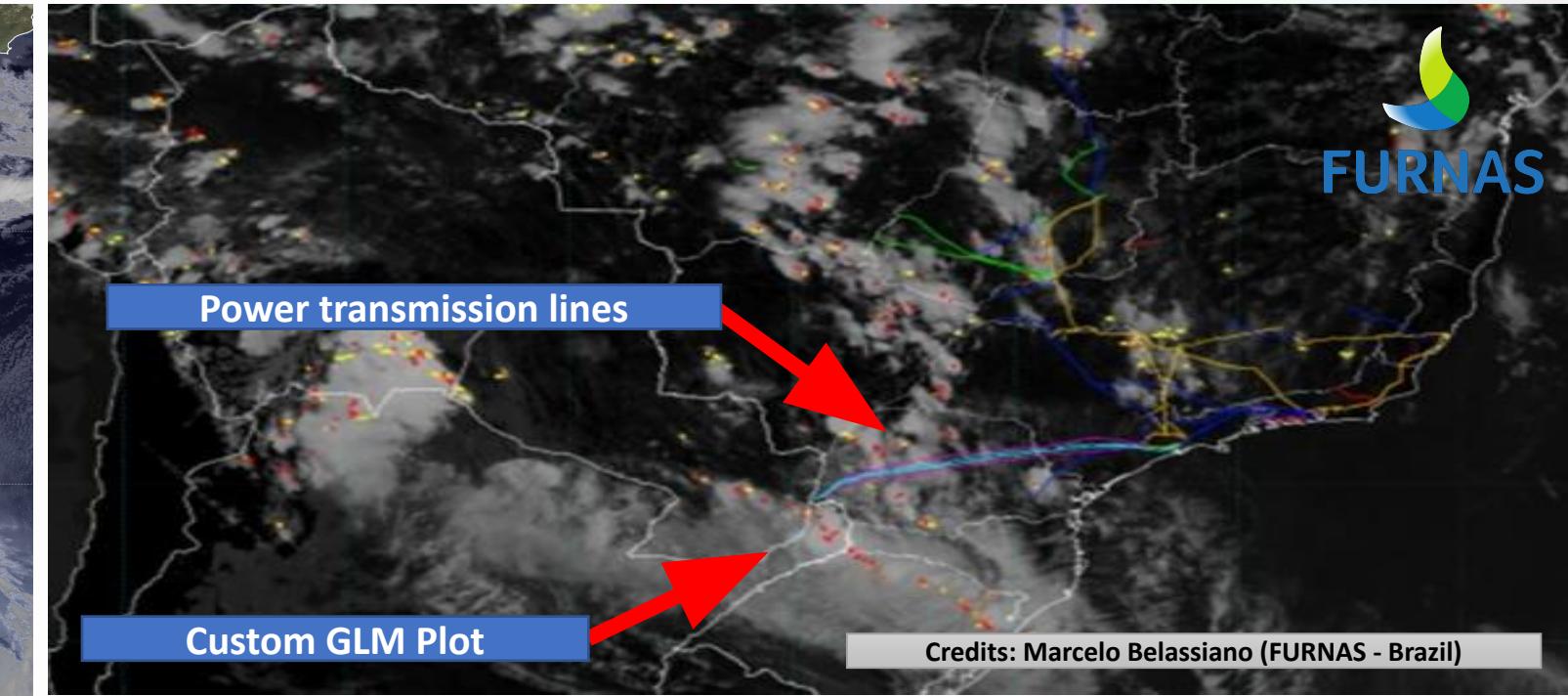
Remap finished! Time: 4.43 seconds

##### SHOWCAST MONITOR ENDED #####

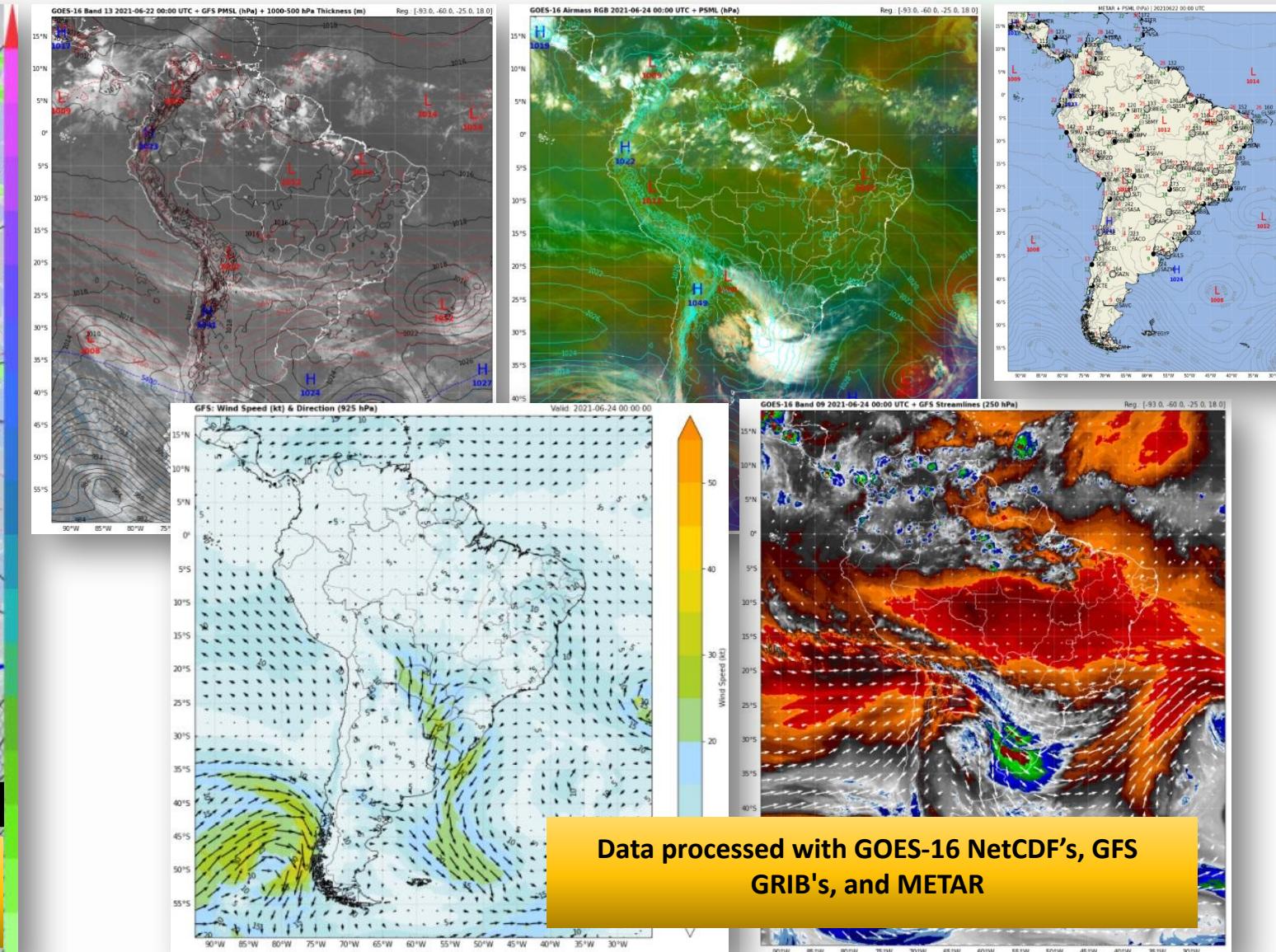
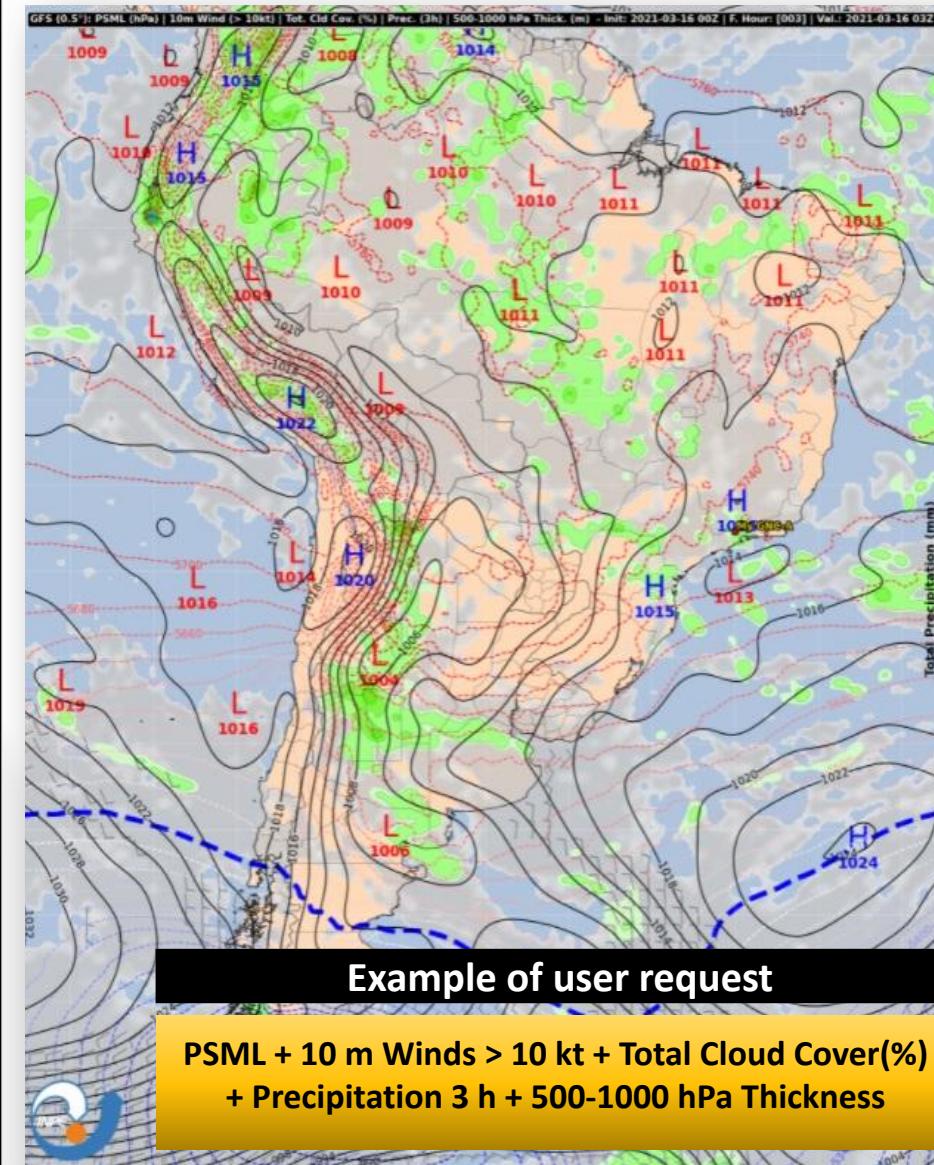
Ended at: 2021-11-01 12:20:52.298125


Number of products processed: 1

Total processing time: 5.4 seconds



Monitor Script Executed

Waiting for next call. The interval is 10 seconds.



# Importance of Custom Data Processing



# Importance of Custom Data Processing



# Importance of Custom Data Processing



# Internet Data Distribution (IDD): Definition

The Unidata community of over 260 universities is building a system for disseminating near real-time earth observations via the Internet. Unlike other systems, which are based on data centers where the information can be accessed, [\*\*Unidata Internet Data Distribution \(IDD\)\*\*](#) is designed so a university can request that certain data sets be delivered to computers at their site as soon as they are available from the observing system. The IDD system also allows any site with access to specialized observations to inject the dataset into the IDD for delivery to other interested sites.

Unidata Local Data Manager ([\*\*LDM\*\*](#)) is a collection of cooperating programs that select, capture, manage, and distribute arbitrary [\*\*data products\*\*](#). The system is designed for event-driven [\*\*data distribution\*\*](#) of the kind used in the Unidata Internet Data Distribution project.

The Unidata IDD has been in operation on a 24x7 basis since [\*\*1995\*\*](#), when it replaced a real-time data delivery system that used a sideband on satellite TV broadcasts. The satellite delivery system required that user sites pay a subscription fee and have a special receiver to decode the data stream. The [\*\*switch to IDD\*\*](#) did away with the subscription fee and the need for a special receiver, which made it possible for many more sites to receive a greatly expanded menu of data streams. The reach of the IDD has been expanded [\*\*internationally\*\*](#) and it is now being used to ship real time data in all directions to virtually every continent on the globe.

# Internet Data Distribution (IDD): Problem

In spite of Unidata's success in the atmospheric science community, it is still difficult to adapt current systems to provide new kinds of data to all educational institutions that need them. While commercial providers and government agencies are making important contributions in terms of making new data sources available, the current approach requires that raw data be transported to the satellite uplink site to be included in the broadcast.

The IDD approach addresses the critical remaining need for a more flexible, affordable data delivery system for the education and research community. Given the need for automated real-time data dissemination on a national scale, existing network facilities (FTP, USENET News polling model, distributed file systems) are inadequate to solve the problem with the required degree of timeliness, automation, and reliability.

# Internet Data Distribution (IDD): History

Universities across the nation are transforming their teaching and research efforts through increased use of a rapidly expanding menu of environmental data. With funding from the Atmospheric Sciences Division (ATM) of the National Science Foundation (NSF), the Unidata Program is playing, and will continue to play, a central role in this transformation by enabling universities to employ innovative computing and networking technologies to acquire such datasets in real-time and use them routinely in their classrooms and research labs.

The Unidata Program has embarked on another endeavor that promises to deepen and broaden this fundamental transformation. The new Internet Data Distribution (IDD) initiative addresses an issue facing the atmospheric sciences community in the immediate future: how to cope with the immense volume of data scheduled to become available as part of new initiatives in NOAA and other agencies<sup>2</sup>. As an example, the National Weather Service modernization will soon create a real-time NOAAPort data stream of 2 megabits per second. The concept further enables education-oriented institutions that thus far have lacked the requisite equipment and expertise to integrate the new technologies into their programs gradually. The Unidata Program Center (UPC) will continue to act as a catalyst and facilitator for outreach activities at its member universities.

# Internet Data Distribution (IDD): Goals

The concept behind the Unidata IDD is to develop a system for disseminating real-time scientific data which will build on Internet facilities as the underlying mechanism for data distribution and for broadening the community of users who can utilize the information. The system will:

- enable scientists and educators to use their local workstations and personal computers to access scientific data from a wide variety of observing systems and computer models in near real-time;
- allow data to be injected into the system from multiple sources at different locations; and
- enable universities to capture these data, process them, and pass them on in easy-to-understand and easy-to-access forms (such as electronic weather maps in raster image files) to other institutions having more modest data needs as well as more modest equipment resources and technical expertise.

# Internet Data Distribution (IDD): **Idm** for sharing data

The IDD is based on the Idm program.

The Unidata **Local Data Manager (LDM)** system includes network client and server programs designed for event-driven data distribution, and is the fundamental component comprising the Unidata [Internet Data Distribution \(IDD\)](#) system.

This program is **very small** and **very efficient** in getting and transporting information.

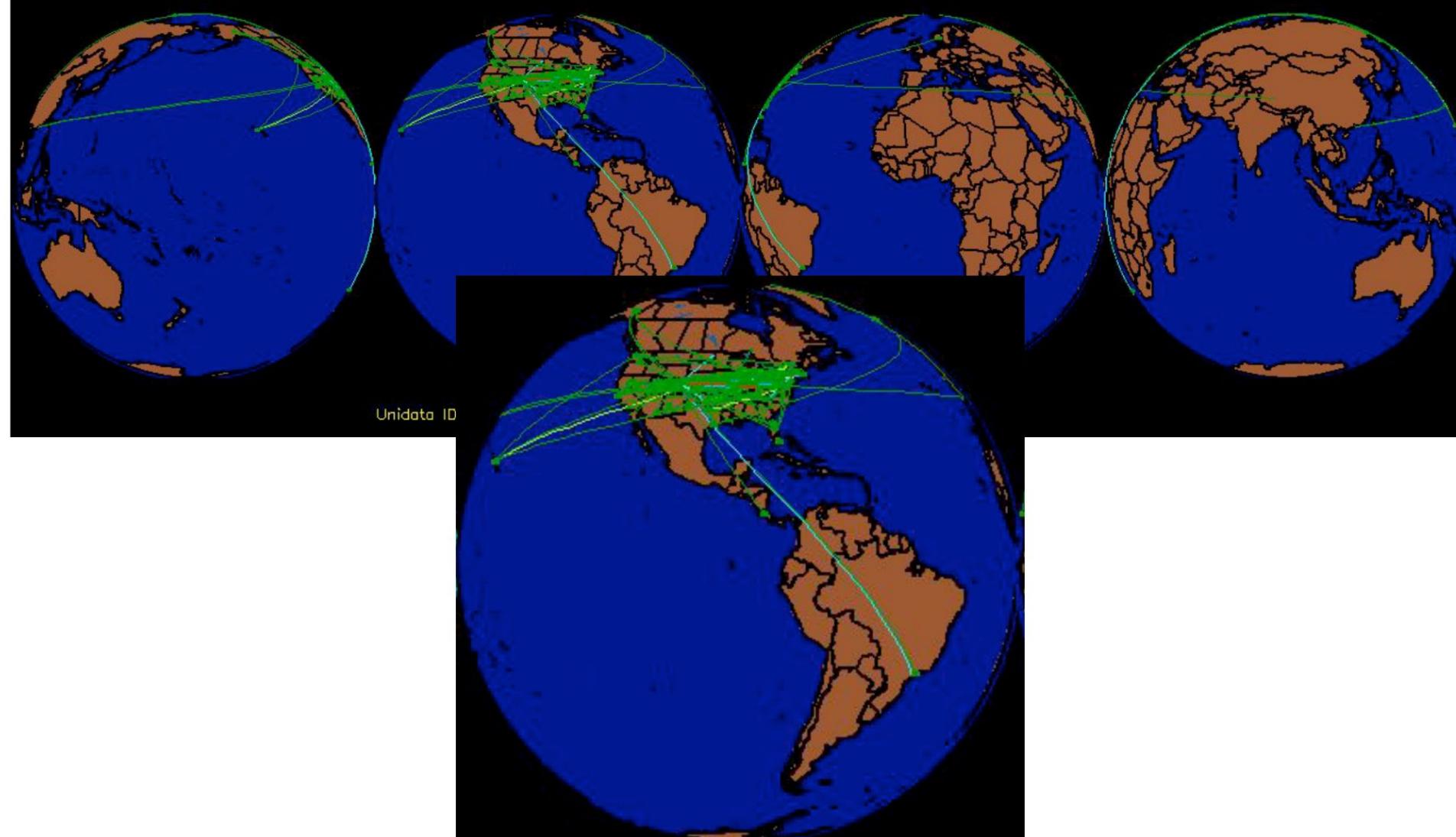
The latency of satellite data with Idm is usually fractions of seconds or seconds in good connections and can be 2 minutes under non-ideal circumstances.

**THERE IS NO CHARGE, SUBSCRIPTIONS OR FEES.**

# Internet Data Distribution (IDD): Feeds

The IDD is based on FEEDS.

A computer with ldm installed can send or receive data.


Whoever has data (any data) can create a **Feed** and allow others to access it. Whoever needs the data (once allowed in ldm) can request the data that goes into the Feed.

It is a team effort. Usually the main feed is sent to some users and they will share the same feed data with others.

There are several feeds created by Unidata:

<https://www.unidata.ucar.edu/software/ldm/ldm-current/basics/feedtypes/>

# Internet Data Distribution (IDD): Structure



# Internet Data Distribution (IDD): Feeds

|                  |                          |                                                                                                 |
|------------------|--------------------------|-------------------------------------------------------------------------------------------------|
| <b>UNIWISC</b>   | FT5, MCIDAS              | <a href="#">Satellite imagery and derived products created by Unidata in McIDAS AREA format</a> |
| <b>PCWS</b>      | FT6, ACARS               | ACARS data from commercial aircraft                                                             |
| <b>FSL2</b>      | FT7, PROFILER            | Wind profiler data                                                                              |
| <b>FSL3</b>      | FT8                      | Reserved for NOAA/GSL use                                                                       |
| <b>FSL4</b>      | FT9                      | Reserved for NOAA/GSL use                                                                       |
| <b>FSL5</b>      | FT10                     | Reserved for NOAA/GSL use                                                                       |
| <b>GPSSRC</b>    | FT11, NMC1, AFOS         | SuomiNet GPS data gathering                                                                     |
| <b>CONDUIT</b>   | FT12, NMC2, NCEPH        | <a href="#">NCEP high-resolution model output</a>                                               |
| <b>FNEXRAD</b>   | FT13, NMC3               | <a href="#">NEXRAD Level-III composites and MRMS data</a>                                       |
| <b>LIGHTNING</b> | FT14, NLDN               | Lightning data                                                                                  |
| <b>WSI</b>       | FT15                     | NEXRAD Level-III (NIDS) radar products (Private network: not in the IDD)                        |
| <b>SATELLITE</b> | FT16                     | <a href="#">GOES East &amp; West Satellite imagery in GRB format</a>                            |
| <b>FAA604</b>    | FT17, FAA, 604           | FAA604 products for NWS use (private network), but available for IDD use                        |
| <b>GPS</b>       | FT18                     | <a href="#">SuomiNet GPS data</a>                                                               |
| <b>FNMOC</b>     | FT19, SEISMIC, NOGAPS    | <a href="#">NOGAPS and COAMP model output from Fleet Numerical</a>                              |
| <b>GEM</b>       | FT20, CMC                | <a href="#">Canadian Meteorological Center GEM model output</a>                                 |
| <b>NIMAGE</b>    | FT21, IMAGE              | <a href="#">NOAAport satellite imagery and level 2 products</a>                                 |
| <b>NTEXT</b>     | FT22, TEXT               | <a href="#">NOAAport textual products</a> (for future use)                                      |
| <b>NGRID</b>     | FT23, GRID               | <a href="#">NOAAport high-resolution model output</a>                                           |
| <b>NPOINT</b>    | FT24, POINT, NBUFR, BUFR | NOAAport point products (for future use)                                                        |
| <b>NGRAPH</b>    | FT25, GRAPH              | <a href="#">NOAAport Redbook Graphics</a> (for future use)                                      |

## IDD-CCASA

Cimientos para la Distribución de Datos por Internet -  
Caribe, CentroAmérica y SurAmérica.

Foundations for the Internet Data Distribution -  
Caribbean, Central America and South America.

El Receptor de Datos del GOES-R por Internet (GIDaRe) brinda resolución completa y productos en tiempo real para ABI, GLM, S UVI, SEISS, EXIS, MAG. Existen dos versiones: GIDaRE-ATMOS y GIDaRe-ESPACIO.

The GOES-R Internet Data Receiver (GIDaRe) provides full resolution, real time products for ABI, GLM, S UVI, SEISS, EXIS, MAG. There are 2 versions: GIDaRE-ATMOS and GIDaRe-SPACE.



# THANK YOU!

EXAMPLES OF DATA AND TRAINING DISTRIBUTION TO UTILIZE UNDER NORMAL AND UNUSUAL CIRCUMSTANCES - WMO Vlab and NOAA Train the Trainers Workshop - 6 August, 2022

**Seth Clevenstine**

[seth.clevenstine@noaa.gov](mailto:seth.clevenstine@noaa.gov)

NOAA

**Diego Souza**

[diego.souza@inpe.br](mailto:diego.souza@inpe.br)

INPE

**Marcial Garbanzo**

[marcial.garbanzo@ucr.ac.cr](mailto:marcial.garbanzo@ucr.ac.cr)

University of Costa Rica