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Distribution

* The presentation is available on our ftp server
at:

— https://ftp.wpc.ncep.noaa.gov/mike

— You can copy the presentation, or part of 1t, and

you may share it with others as long as you give
credit to NOAA.

— The use of the material for commercial purposes
1s not allowed

 NOAA retains all copyrights of the material







Rules

* Your participation 1s required

— Partake of the poll questions to assess your
understanding of the material

* Questions??
— Use the chat box to send a text message(s)
— Bernie, Jose and Kathy will be monitoring

* They will answer and/or 1dentify questions of
common interest.



Surface Fronts



Fronts

 Fronts: The interface or transition zone between
two air masses of different density (baroclinic)

— Density depends on temperature
* Moisture content plays a secondary role

— Present weather not a requirement.
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Baroclinic Boundaries




Baroclinic

Note: Baroclinic implies temperature advection.

BAROTROPIC SYSTEM BAROCLINIC SYSTEM

N
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-NO temperature advection. -Isobars and 1sotherms are not parallel,
-Isobars and 1sotherms are parallel In a cross-contour pattern

-Advection of temperature.



Defining Baroclinicity (Cont.)

 Since baroclinic implies advection of temperature, we can
analyze for baroclinicity through gradients of temperature
and/or thickness.

* Gradient measures how much a given variable changes over
a set distance, 1n this case temperature. The rate of change
determines the tightness of the gradient and strength of the
boundary.

— Without a thermal (density) gradient there 1s no front

— First we need to 1dentify the thermal gradients:

 Thickness, like the isotherms, allow us to quickly determine warm vs.
cold air masses.
— Low thickness values implies cooler air
— High thickness values implies warmer air



Gradients

 What’s a gradient? An increase, or decrease, in the magnitude
of a property over a given distance.

 Example: Temperature Gradient
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Temperature and Thickness Relationship
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* The thickness of a layer 1s directly proportional to the mean
temperature of that layer.

* Thus, we can analyze air masses by evaluating the layer difference
rather than the temperature at a particular level.

Thickness ~ Mean Temperature of a Layer



Why use thickness instead of

temperature?

 Provides a feel for vertical structure
— Depth of the layer

* Reduces the diurnal/nocturnal temperature
variability due to heating/cooling in the
boundary layer

— Acts as an “equalizer”



Example: 950 hPa Temp vs.

1000-850 hPa Thickness

Tight
Gradient

950 hPa Temp.

Non frontal, topographically induced
gradients.
Very important to know the terrain!




1000 — 500 vs. 1000 — 850 hPa Thickness

In mid latitudes, where cold surges typically span the troposphere, the

1000-500 hPa thickness works well.

Fronts entering the tropics are shallow and tend to confine to the lower
atmosphere. Thus, it 1s better to use the 1000-850 hPa thickness.
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Frontal Slope

Advancing Cold
Air Behind Cold
Front

Receding Warm
Air Ahead of
Cold Front

Steep frontal slope
Typical of a continental polar
with upper level support.
1000-500 Thickness

Advancing Cold
Air Behind Cold
Front

Receding Warm
Air Ahead of
Cold Front

Gradual/Gentler frontal slope
Typical of tropical polar
maritime, lacks upper support.
1000-850 Thickness




1000 — 850 hPa Thickness
Wh1ch I8 the cold side?

. .. . . . —
INDPUT 4 CHARACTER COMMANDE AND DELIMITERE OR. EXIT W—\ - \/’//j/Q\
GFS3:LVL= 950:LYR=1000/ 850 :FHR= 12:FHRS= 0/ 0::FIL4=DEC201800.GFS003 ? i
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Side

Instructions..
Find the gradient
Analyze the
thickness values
Find the cold side
Find the warm side
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Evaluating the Thermal Advection

What’s required?

(1) Wind Flow € Vector
(2) Temperature or Thickness €< Scalar Field

Wind Flow (Options)
 Total Wind Vectors, barbs or streamlines
* Pressure or Geopotential Heights

— Assuming geostrophic, wind vectors will lie “parallel” to the pressure
contours, and their intensity will be a function on how tight the
pressure gradient is.

Scalar Field
 Temperature

 Thickness (mean layer temperature)



1000 hPa Temperature °C
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1000 — 500hPa Thickness
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Proper Placement of Surface Front

— Cold advection equates cold front.

— Warm advection equates warm front.

— Neutral advection, stationary front.



Cold Advection

* When the flow
across the thermal
gradients points
from cold to
warm.




Warm Advection

* When the flow
across the thermal
gradients points
from warm to

cold.




Neutral Advection

* The flow 1s
parallel to the
gradient and the
front lies
stationary.




Thickness and Streamlines: Temperature Advection
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01i1ts froinx

Instructions:

re indicated, using the
ﬂow with-respect to the
th1,ckness gradlent determine 1f
the advectlon 1s
Cold (C)
Warm (W)
Neutral (N)




Poll Question #1

(Select the correct answer)
e A:W, B:C, C:C, D:W, E:W, F:N
A:W, B:C, C:W, D:N, E:C, F:N

« A:W, B:N, C:W, D:N, E:C, F:N



Poll 1 Answers Review




Cold Advection over Warmer Waters
Post Frontal- Cold A1r Cu

BETRIETT S
- 23

Following frontal passage, cold air advectlon over warmer waters favors
convective instability. This triggers post frontal “cold air cumulus”
(Moderate Cu and Cu Congestus)



Mechanism Leading to the Formation of

Post Frontal Cold Air Cu
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Polar front surges over water, with cold post frontal air
advecting over warmer SSTs



Mechanism Leading to the Formation of

Post Frontal Cold Air Cu
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Prefrontal
UVM

200 —

500

Postfrontal
700 DVM

850 >

Colder Air

Warmer Air
SFC

’ Rarka pd T Lana windl wo * pe Ay 314 et gy ¥ b
%) e e L o 0 0% PL Kb Phosand ot dhiafi e ) PP SR G-t nIT A VTS T A A R e PP A ANASE P . ' G SRt o FIVITN AT ST o PRI Al THASE ML o6
bbb g gl gl e e b p g o g TR s g e g R e 8 g e gl e b 2 i e g s B piage e gl A e bl 8 g e g R 8 e o g e b e e s
o rh P b b . 1 N ' > - A e A S 1 " T . . o T M B b 1 o ! it voa b o v - 1 B L 9 b 0 e gt 1 - '
el i i Sea Surface Temp: 26C 55 - 5 iavnis S fmanab s S8 TATY nnp
oy T T R T T M e e P T M R I T W 4 Loy a " by a L by 4
4 - Hadi s TSt TR I e el e LS SR e el (R S

-------

- Contrast between air masses and low level convergence results in
upward vertical motion (UVM) ahead of the surface front.
- In an upper convergent pattern, the colder post frontal air sinks



Mechanism Leading to the Formation

of Post Frontal Cold Air Cu
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- At low levels, the colder air moving over warmer
SSTs incites convective instability, while the stronger
winds results in mixing of the boundary layer



Mechanism Leading to the Formation

of Post Frontal Cold Air Cu
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- The deep UVM motion ahead of the front results in deep cloud cover
- Post frontal convection, facing DVM, caps at mid levels. This process
continues as long as cold air advects over the warmer ocean waters.



Post Frontal Cu/Shallow

Convection over Water

e This often results in
shallow post frontal
convection.

— Nocturnal cooling
contributes to a higher
incidence of rain
showers at night

— Activity typically ebbs
during the day as
boundary layer warms
under radiational
heating




Frontal Analysis




Conceptual Model — Northern Hemisphere

(a) Norwegian Model (PMSL) IV

{(b) Shapiro—Keyser Model
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Application Conceptual Model — CONUS
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Surface Front Placement

Fronts are drawn along a trough, parallel to the
1sotherms and on the warm side of the gradient

Cold Front Warm Front

LA
r |2 %, |-
Cold Air O(' OO/

q Warm Air

Thermal Gradient

The front type depends on the advection:
-Warm Advection = Warm front

-Cold Advection = Cold front
-Neutral = Stationary front




Drawing the Surface Front: PMSL and BL Temps

IMITERS OR EXIT
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Drawing the Surface Front: PMSL and BL Temp

IMITERS OR EXIT
S= 0/ 0. FIL2=FEBO41400. GF3003
DASH BO15S F36

. Find Frontak. — -
Gradient

o4 cold/witm side
~__ ~of gradient
LA;;;M:ED 208 —g:;\ -
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Drawing the Surface Front: PMSL and BL Temp

IMITERS OR EXIT
S= 0/ 0. FIL2=FEBO41400. GF3003
DASH BO15S F36

Find Frontal-
Gradient

1‘ wld/warm stde

M *%)f gradtemj




Drawing the Surface Front: PMSL and BL Temp

IMITERS OR EXIT
S= 0/ 0. FIL2=FEBO41400. GF3003
DASH BO15S F36
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Drawing the Surface Front: PMSL and BL Temp

IMITERS OR EXIT
S= 0/ 0. FIL2=FEBO41400. GF3003
DASH BO15S F36

-

x\}/—mlf\l

Fronts are drawn:

- Along the trough
Parallel to the
1sotherms
- On the warm side

ﬁofthe gradlent




Poll Question #2
(Select all that apply)

Fronts separate air masses of different
density

* Barotropic implies temperature advection
Baroclinic implies temperature advection

Shallow boundary in the tropics, use the
1000-850 thickness

» Shallow boundary 1n the tropics, use the
1000-500 thickness



Poll #3
Which one 1s correct?

A 1s correct? B i1s correct?



Poll Question #3
(Select one)

A 1S correct

B 1s correct

Both are incorrect
Both are correct

Not enough information to determine



Poll #3 Review
Which one 1s correct?

A is correct, along the trough on B 1s correct, drawn 1n the middle

the warm side of the gradient of the gradient.



Frontal Analysis in the Caribbean

e AT
— Temperature drops following frontal passage

e AP
— Pressure drops as the frontal trough approaches
— Pressure rises as the polar ridge builds

 ATd

— Note: Dew point temperature alone not enough to
determine air mass changes

— In polar maritime air masses
« Td > 18C cold front is probably north of the station
« Td < 18C, cold front is likely south of the station

e Clouds
— Ceiling drops as the front makes landfall



Frontal Analysis in the Caribbean

e Pressure/Pressure Tendency

* Air mass density changes (baroclinicity)
— Moisture (Td, Mixing Ratio)
« Analyze i1sodrosotherms every 2-3 degrees
« lid = I8C | for a polar maritime air mass.

— Temperature
 Strong contrast in continental/marine polar air masses
« Slighter difference [254€], when looking at Tropical air masses

v Combination of T and Td: Equivalent Potential
Temperature (EPT) analyzed every 5-7 degrees

e Wind shift with frontal trough



Analysis of 24 Hours Tendencies
1000 hPa Streamlines, 1000-850 Thickness and Surface Obs

‘”(‘E’ e
15 ri ﬂ

Prefrontal Over the Yucatan Postfrontal Over the Yucatan
T=26-29C, Td= 20-23C T Td
20181220 16:15Z 20181221 15:157



Poll Question #4

Which one 1s correct‘?

160309/1415 GOES16 CHO2 WIS_0.64




Poll Question 4

(Select One)
Which one 1s correct?

e A is correct
B 1s correct
e A and B are incorrect

e A and B are correct



Poll Question 4 Review
Which one 1s correct‘?

160309/1415 GOES16 CHO2 WIS_0.64




Vertical Structure of a Front

1000-500 hPa Thickness
VS.
1000-850 hPa Thickness



Vertical Structure of a Front

* A deep layer/tropospheric polar front 1s one
that has strong mid/upper level support

— 1000-500 hPa Thickness

A shallow layer polar front 1s one that lacks
mid level support

— 1000-850 hPa Thickness

 |Fronts entering the tropics typically lack
mid level support —= 1000-850 Thck




High Amplitude Long Wave Polar Trough

7f, e ,,

Highly amplified long wave trough over the eastern USA-Gulf of
Mexico. The deep cold core is likely to reflect in both, the 1000-500 hPa
and the 1000-850 hPa layers.



1000-500 Thickness vs 1000-850 Thickness

- Although the 1000-500 hPa thickness gradient clearly shows a front
over the Gulf of Mexico, the 1000-850 hPa provides finer detail.
- The difference 1s due to the slope of the cold front



Frontal Slope

200 200

Advancing Cold Receding Warm Advancine Cold Rec.eding Warm
Air Behind Cold Air Ahead of i Behinﬁ = Air Ahead of
Front Cold Front Front Cold Front

Steep frontal slope Gradual/Gentle frontal slope

In a shallower boundary with a gentler slope, the 1000-500 hPa
thickness would not reflect the proper placement of the surface
front as 1t enters the tropics.



Deep Polar Trough: 1000-850hPa
Thickness

Das
81 102401 101422 464

¥
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500 hPa Height & Winds PMSL & 1000-850 Thickness

Deep layer support, with the mid level trough bottoming over the Gulf
of Mexico.



Vertical Cross Section
Temperature and Potential Temperature

GFS3:Lat/Lon 538/ 70W=> 108/ 55W :FHR= 24:FHRS= 0/ 24::FIL3=AUG121300.GFS003
2013/ 8/12/ 0—THTA CIN4&TEMP CIN4 DOTS&ANIM

Analyzing fronts in a cross section: Evaluate the horizontal
gradient of Temperature or Potential Temperature




Vertical Cross Section of Potential Temperature and EPT
for F24 (Deep Boundary)

GFS3:Lav'Lon 555/ 70W=> 105/ 35
2013/ 8/12/ 0—THTE CIN2 DOTS C|

Front: Convective Instability:

Analyze the horizontal gradient of .~ Analyze the vertical profile of
potential temperature (THTA). equivalent potential temperature
Determine which side 1s the (THTE)

cold/warm one . If THTE decreases with height, the
The cold front lies on the warm side alr mass 1s convectively unstable.
of the gradient .. If THTE increases with height, the
column 1s convectively stable.

Front has deep layer support and 1t 1s clearly evident in
both layers, 1000-850 and 1000-500 hPa




Vertical Cross Section of Potential Temperature and EPT
for F36 (Deep Boundary/Steep Slope)

GFS3:Lav'Lon 555/ 70W=> 10§/ 55W :FHR=36:FHRS= 0/ 24::FIL3=AUG121300.GFS003
2013/ 8/12/ 0—~THTE CIN2 DOTS CLR1&THTA CIN4 CLR2&ANTM

Front has deep layer support and it 1s clearly evident in
both layers, 1000-850 and 1000-500 hPa




Vertical Cross Section of Potential Temperature and EPT
for F48 (Deep Boundary/Steep Slope)

GFS3:Lav'Lon 555/ 70W=> 105/ 55W :FHR=45:FHRS= 0/ 24::FIL3=AUG121300.GFS003
2013/ 8/12/ 0—~THTE CIN2 DOTS CLR1&THTA CIN4 CLR2&ANIM
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Front has deep layer support and it 1s clearly evident in
both layers, 1000-850 and 1000-500 hPa




Vertical Cross Section of Potential Temperature and EPT
for F60. (Shallow boundary/gentler slope)

GFS3:Lav'Lon 555/ 70W=> 105/ 55W :FHR= 60:FHRS= 0/ 24::FIL3=AUG121300.GFS003
2013/ 8/12/ 0—THTE CIN2 DOTS CLR1&THTA CIN4 CLR2&ANTM

Front well defined in the 1000-850 hPa
layer, but no longer between 1000-500 hPa




Vertical Cross Section of Potential Temperature and EPT at
F84. Shallow Boundary south into the Tropics

GFS3:Lav'Lon 555/ 70W=> 105/ 55W :FHR= §4:FHRS= 0/ 24::FIL3=AUG121300.GFS003
2013/ 8/12/ 0—THTE CIN2 DOTS CLR1&THTA CIN4 CLR2&ANTM

?3,%?\?—39_ “i N

L

Old front well defined in the 1000-850 hPa
layer, but no longer between 1000-500 hPa




Deep Polar Trough: 1000-850 Thickness

SN

Vertical Cross Section: THTA, PMSL & 1000-850 Thickness
TEMP and Gradient

Layer above 800 hPa nearly 1sothermal. Lacking contrast, the thickness
between the 1000-500 hPa 1s not as representative as 1000-850 hPa.
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1

T'he left side 1s the cold side

1

I'he tropopause 1s higher to the left

r

1

T'he right side 1s the warm side

Poll Question #5
(Select all that apply)

» Surface front to the left of the gradient

* This 1s a shallow front
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Analysis Tools



Analysis Tools

 Mean Layer Relative Humidity

* Equivalent Potential Temperature (EPT)

e “FRONT” Macro



Mean Layer Relative Humidity

 Mean Laver Relative Humidity

— The mean layer relative humidity between the surface and
500 hPa

— RH tells us how close to saturation

* Does not quantify moisture content

— Typically, RH 60% or greater for significant cloud
cover

— Quasi-conservative property

 As the front propagates, moisture propagates with it.



Mean Layer RH

From GFS, 20200917 00, F96




Mean Layer RH / 1000-850 THCK
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Mean Layer RH, THCK, PMSL

- Front drawn along the leading
edge/warm 31de of the thermal ) O
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L. Winds (Magenta)

RH, THCK, PMSL, BL Winds
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{nyest - Moist Pool

RH, THCK, PMS.




Verification of the Forecast
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Poll #6
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Poll #6
Is the moist plume frontal or non-frontal
(Select one)

It 1s frontal
e It 1s non-frontal

 Cannot be determined



Poll #6 Review
ean La er RH T HCK PMSL
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Poll #7
Mean Layer RH, THCK. PMSL
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Poll #7
(Select one)

“A” 1s frontal, “B” 1s non-frontal
“A” 1s non-frontal, “B” 1s frontal

“A” and “B” are frontal

“A” and “B” are non-frontal



(Yellow),

MSL

Pres

Poll #7 Review
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Equivalent Potential Temperature

(EPT)

The secret to tropical weather
forecasting



Equivalent Potential Temperature

* Temperature of a parcel of air when you
add the latent heat released during
condensation to the sensible temperature of
the parcel at constant pressure (1000 hPa)

— It depends on the moisture content and actual
temperature of the parcel




EPT

e Could we use EPT to determine
baroclinicity?

— Yes as long as EPT is a function of both T
and Td.

— No if E i of Td, with T
stant g




EPT and MSLP
- Evaluate Frontal Grgdients

| St \Q\ELID'dJLIJﬂy 4 \ ( <
GFE3:.LVL=E013:LYRE=1000/ §50 .FHE~=12:FHES= 0/ 14::FILI=MAR(3 1600 GF 2003 ":" \\ | D | ||:| D y | D E |:| . | D 3 E :
2016/3/3 L & ] EAN, ! i A 2 ¥ 3 ||:| l 5 | D E 2 MO . = i . 5 5 G ; 2 i g 3 i 5 | DEh -||]ND3|:| i B i
VIWNG-VI2 -WEMN/E 52 103366 101640 4 ; | |:| | : | D l i 3 g
J'
| _ _ | L0242 1gog
p — AU { ' : :

FO-1E |0fO0ER

el W

020




1000-850 Thickness and MSLP
Evaluate Frontal Gradlents

B o L S G f{;zl-r.l o | . ) )
SNSRI E ) | oy ’:I‘-I‘-I 7

GFE3:LVL=E013:LYR=1000/ B30 :FHR=12.FHRE= 0/ 24.:FIL2=MARO3 1600 GFE003 B Bl - _.’-"_--- _'}:’ 2 5 _\__‘_. | .r - .\‘\ ' | |:| 3 a 3
% s e spisp - MefeNeini T RS \ / BT i | 0 E:'| e

¥ S "___-__ (i L) 5 J,r £ .\I N 'I it ; : ; : :: : lk 1 | :

2016/ 3/ 3/ 0—-PMEL CINZETHCK CINT DOTS CLE1&ANIM Lo D'\]D 3 D 2
W '\%'.I\G-'\JJ =N 'JL'I\.L‘\ BD= 50031 103366 101640 459 o

NP TR,

|L|m;$:_ T e oA
EIREIRE
. : e‘ll]l

B
!

TR '-IEI'I'-ID'I?(O




EPT as a function of Moisture Content

INPUT 4 CHARACTER CCOMMANDS AND DELIMITERS OR EXIT
GF53: LYR=10 500 :FHR= 12:FHRS= 0/ 0::FILZ=MARO031600.GF5003
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EPT (Magenta), 1000-850 Thickness

(Cyan) _and_MSLP (Yellow)
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Poll Question #8
EPT (Magenta), Thickness (Cyan), PMSL (Yellow)
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Poll Question #8
(select one)

A: Frontal, B: Frontal, C: Frontal
A: Non-Frontal, B: Frontal, C: Non-Frontal
A: Frontal, B: Frontal, C: Non-Frontal
A: Frontal, B: Non-Frontal, C: Frontal
A: Non-Frontal, B: Frontal, C: Frontal




Poll Question #8 Review
EPT (Magenta) T ickness (Cyan) PMSL (Yellow)
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~1000-850 Thickness,
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Poll Question #9
EPT (Magenta) Thlckness (Cyan) PMSL (Yellow)

Determine front type:
Cold Warm Statlonary




Poll Question 9
(select one)

A: Cold, B: Cold
A: Stationary, B: Warm

A: Warm, B: Cold
A: Cold, B: Stationary
A Stationary, B: Stationary
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WinGridDS FRONT Macro

Identification of Surface Fronts

What is plotted?

(1) Colors: Variable a = represents air mass
properties Cool/dry to warm/humid

(2) Contours: Variable p = —
Magnitude of the gradient of ¢,
enhanced by gradients of

PWAT y 66_1000 hPa Fronts ofﬁen go here,' in the
warm side of gradients

(3) Complementary Fields
¢ 1000-850 hPa Thickness (GPM)
* Td=18°C at 2m
* 1000-925 hPa Winds (kt)




WlnGrldDS FRO NT Macro |dentification of Surface Fronts

Constructi ng (0 4 Schematic Cross Section of a Front
3
> 4 variables:
* 1000-850 hPa Thickness Thermal
* 1000-925 hPa Thickness Aspects
 Td 1000 hPa Moisture z
 Td 925 hPa Aspects = 15
b=
sy
> Quantities are multiplied to T
enhance gradients for forecasters 1 -
to see them rapidly. 925 P\~
» Over terrain, we look a bit higher I
: 0 hP
(e.g. Mexican Plateau/SW US) Sup . |} —




ldentification of Surface Fronts

WinGridDS FRONT Macro

Schematic Cross Section of a Front

Constructing 8

Combination of

» Magnitude of the gradient of a
« "Boundaries between air masses”

» Magnitude of the gradient of PWAT

* Helps over complex terrain/tropics 1.5

-Reduces “noise” from adiabatic compression
in lee of mountain ranges.
-Enhances boundaries with strong moisture
signals.

Height (km)

» Magnitude of the gradient of Be at 1000 hPa

» Enhances signature of the front near . 1000 hPa
the surface. Sup— L, N




Mean Layer RH, THCK, PMSL
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Hand Drawn Analysis vs. Objective




Verification of the Forecast

UTC MON 21 SEP 2020
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Interaction of Upper Level Jets

with Surface Fronts




Subtropical Jet and Polar Front Interaction

* The question 1s, what interaction, i1f any, a subtropical jet
can have with polar fronts over the Caribbean Basin?
— Polar fronts are accompanied by polar jets
— Subtropical Fronts??
* Only in the marine layer

* Ageostrophic circulation around an upper level jet can
help sustain the baroclinic environment along a polar front
as 1t pushes south into the Basin.

— The jet aloft, with its indirect ageostrophic circulation, will sustain
the temperature gradient

« Although the Polar Front limits to low levels of the
atmosphere as 1t enters the basin, the symbiotic interaction
with subtropical jet helps sustains this feature.



Jet Dynamics: Direct/Indirect Ageostrophic
Circulation

Indirect thermal
circulation

Weak static
stability

Courtesy of Moore 2004

Indirect Circulation: Tightens the gradient — sustains the front
Direct Circulation: Loosens the gradient — weakens the front




Subtropical Jet

Positive Scale Interaction

- Davergence aloft along
the jet maxima could
enhance development
along a weak
front/frontal shear line
More favorable for an
echo training event

Surface front parallel to confluent asymptote




Jet at 250 hPa

- HUN . =

WPL2:LVL=MAKW:LYR=1000/850 :FHR= 0:FHRS= 0/24:FIL 1=MAR160700 AVN-PL
200872729/ 0--WSPK NMAXW GT65 CII0O&HGHT CI60 250& ANIM

When doing frontal analysis/forecast in — o 10920
the tropics, always consider positive '

- (negative) scale interaction with jet
aloft.




* As long as the jet aloft remains, the gradient
will hold and the surface front will remain

* Frontolysis: The gradient will slacken as
the jet weakens or pulls away.

 If you have a jet aloft, don’t kill the front!




Upper Jet and 1000 — 850hPa Thickness

MUNDS mn DELIMITERS OR EXIT b pA i b . CTER COMMANDS AND DELIMITERS OR EXIT
00 :FHR= 0:FHRS= 0/ 24::FILI=SEP302006.GFS004 \ = . 4 o 7 i
THck cIvs DDTS CLR2ZWSPK GT70 CI10 CLR4GHSEK CTFC CFCJ MAXW

Model analysis shows gradient slacking as the jet and the trough pulls.




1000 — 850 hPa Thickness/Magnitude of
¢ Gradient

s s

6% 1‘3@14? :g:fnum/ m
: il - ;} = -ou

Objective analysis confirms previous observation, with the magnitude
of the gradient decreasing as it slackens.




Cold Air Advection (CAA)



Conceptual Model: Frontal Northerlies and CAA

Divergencia
en altura

Topographical
Forcing

Required: -Post frontal northerlies > 25Kt
-CAA over Warm Waters
-Td >20C
-Topographical Forcing
-Mid or upper level divergence




Cold Air Advection

* Consider intensity of the winds

e Cold air advection
— ADVT TEMP WIND DPOS

* Sea surface temperature and anomalies

NWP Limitation: GFS is not
atmospheric coupled with the
ocean. Temperature 1s assumed

to remain constant throughout the
forecast cycle (240 hrs)




Frontal Northerlies — Tehuantepecer Jet

Maximum
Rainfall

Max rainfall on the cyclonic side of low level jet maxima as enhanced
by topographical forcing and CAA over warm waters.




10.3um Sep 29/12z- 30/12z, 2020

Precipitacion acumulada en 24 horas (mm)
de las 8:00 del 29 de septiembre a las 8:00 del 30 de septiembre de 2020
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© 2i-Tapijulapa, Tab.: 152.0
v 3i-Altotonga, Ver.: 145.7
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Longitud Datos preliminares SIH233
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Sep 30/12z— Oct 1/127, 2020

Precipitacion acumulada en 24 horas (mm)
de las 8:00 del 30 de septiembre a las 8:00 del 01 de octubre de 2020
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Precipitaciones maximas en milimetros (mm)
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v 3.-Observatorio de Villahermosa, Tab.: 213.8
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Early and Late Dry Season CAA

 Fall and
Winter

— Cubato
Puerto Rico

« [Fall -
— Southern
Mexico to
northern
Honduras
' S T --:'“;:. 2 0 m
100W 90w aow") TOW- 7 60W T seW

- Mexico-Northern Honduras: 500-1000mm 1n 3-4 days
- Cuba-Puerto Rico: 250-375mm in 3-4 days




Flooding Mexico — Oct 2007

* Worst event since 1963
— Some stations got over 12 in/day

—  Storm total amounts of 40 in three days

 Well forecasted

» Forecast issued/coordinated with SMN
— Cesar Triana, alumni of Tropical Desk at the helm.

Mexico floods

Rising walers trigger falal mud slide
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Conceptual Model
Low Level Flow Warm ENSO — El Nino




ENSO — LLa Nina

e Warmer than normal SE USA
 Fronts limit to the Gulf of Mexico

* Weaker than normal northerly trades
« Eastern Pacific ITCZ remains north of CLIMO

e (Gulf of Panama

— No upwelling due to weaker northerlies
— Warm SST Anomalies

* Impact
* Wrn Colombia/Panama & Guianas: Wetter than normal

e Ecuador: Dryer than Normal
 No dual ITCZ over the eastern Pacific



Conceptual Model

Low Level Flow Cool ENSO — La Nina

thag nor




Upper Level Flow Pattern

2020-11-28220?13UTC ; i e 1‘?‘{’5& . uu’th"“ = 'i" s‘}p-j? — ’: 2 é‘l —
As expected, ridge builds north from the western Caribbean,

with polar perturbations lifting over this axis.




End Part 1

Questions?



Shear Lines

Part 11



Shear Lines vs. Fronts

Shear Lines: are associated with wind shifts

(direction and/or speed).

— A line or narrow zone across which there 1s an abrupt
change in the horizontal wind component parallel to
this line

A line of maximum horizontal wind shear (10kt shear).

* An area of directional wind confluence along, or preceding,
the tail end of a surface front.

» Lacks the baroclinicity/density discontinuity of surface fronts.



Evaluation of a Shear Line

 Area of wind confluence that extends

outward from a col

— Near surface feature

e Shear line can be found:

— Along, or trailing, a surface front
* When parallel, only show the front

— Ahead of the surface front
 Show both

— Never behind!




Wind Directional Confluence and Diffluence
in the Caribbean
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Wind Divergence



Divergence of the Wind

* We can express the divergence equation 1n a
simplified form, with two terms:
 Direction
* Speed
e The direction and speed terms, in-turn, can be
expressed as directional/speed diffluence and
confluence
— Confluence is not equal to Convergence

— Diffluence is not equal to Divergence



Divergence (Cont.)

* Divergence/convergence calculations need
to take 1nto account the direction and speed
terms.

— This 1s done through objective analysis

| Streamline analysis 1s a subjective
technique, and 1t only shows directional
diffluence and confluence.

— It does not show convergence/divergence




Example Directional
Diffluence/Contluence

NPLZ LUL=1000: LYR=1000, 500 :FHR=108:FHRS= 0, 24::FIL1= WAF13MAR. 002 NPLZ LUL= 850:LYR=1000- 500 :FHR=120:FHRS= 0~ 24::FIL1= WAF13MAR.002
02,03,18-00--BKHT CLRZ 02,03-18.-00—-BENT

Directional Confluence Directional Diffluence



Speed

Diffluence/Confluence

MPLZ:LUL= 500:LYR=1000, 500 :FHR=120:FHRS= 0, 24::FIL1= WAF18MAR.00Z 5;1)6363(1
02,/03,18,00—-BKHTEUSPK CINZ

B B RN N o e Contluence

Speed
Diftfluence



Poll Question #10
(Select all that apply)

» Streamline analysis considers the speed and
directional terms

Streamline analysis only considers the
direction

 Diffluence equals divergence
 Diffluence equals convergence



Convergent or Divergent?

Directional
Confluence

Speed
Diftfluence




Convergent or Divergent?

Objective analysis, divergence in
blue: Speed dominates



Convergent or Divergent?

Speed
Confluence

Directional
Diffluence



Convergent or Divergent?

Objective analysis, convergence
in red: Speed dominates



Poll Question #11

e Is the flow
directionally confluent
or diffluent?

* Is the flow speed
confluent or diffluent?

| Subjectively, will this
ravor convergence or
divergence?

850 hPa Winds and Isotachs



Poll Question #11

(Select one)
* Directionally diffluent, speed confluent,
convergent

 Directionally confluent, speed diffluent,
divergent

* Directionally diffluent, speed diffluent,
divergent

Directionally confluent, speed confluent,
convergent



Poll Question #11 Review

Speed Confluent Directionally Confluent



Poll Question #11 Review
(convergence 1n red)

| ::Z.EJ

Speed & Directionally Confluent favors convergence



Shear Lines and Echo Training

Echo Training

:] Mean Flow at
the cloud layer

<— Surface winds

e Shear lines, as

they tend to
linger, present a
higher risk of an
echo training
event forming



SE Bahamas

o0
=
=

Echo Tra

2020-11-18 13:50:14 UTC




Shear Lines: Types

 Frontal Shear Line:

— Cold/Stationary front weakening along the
confluent asymptote

— Speed shear along a waning front

* Prefrontal Shear Line: Driven by a broad
polar ridge, the confluent asymptote
accelerates ahead of the surface front as 1t
nears the Caribbean basin.




Frontal Shear Line

Wind Confluence Induced



Evolution of a Frontal Shear Line
Front parallel to confluent asymptote

[ 3

l
Pr‘afrontal
Tyough




Evolution of a Frontal Shear Line
Front stalls, remains parallel to confluent asymptote

[ 3

l
Pr‘afrontal
Tyough




Frontal Shear Line

|
|
Preffrontal

Tr\\)ugh

Surface front parallel to confluent asymptote



Frontal Shear Line

Front dissipates, shear line remains
R

- Broad ridge to the north favors
a cool advective pattern that
contributes to convective
instability

- Convergence along the shear
line, when present, provides
the low level forcing.

I
|
Prefrental

erm
\

Surface front dissipates, confluent asymptote remains



10.3um Animation — Mar, 2018
1 3 __ 19/ OOZ

Mar—12—-2018 23: 45UTC
2018 071
GOES—16

Frontal system streaming across the Bahamas briefly decays to a frontal
shear line as 1t loses its upper level support and stalls to the southeast.
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IR 10.3um vs. GDAS : 20180315 1
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IR 10.3um vs. GDAS : 20180316 18Z
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Cold Air Advection (CAA)
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Along the tail end of the front, winds weaken and become
nearly parallel to the thickness gradient.



Vis Image: 20180315 187

Mar 15 2018, 18UTC

Cold air cumulus 1s evident far to the north, with fair weather
over the northwest Bahamas. Convection clustering along
frontal shear line over The Turks and Caicos — Ern Cuba



Frontal Shear Line

Speed Shear Induced



Speed Shear

* As the low level winds increase/decrease
along a wind maxima, this results 1n areas
of horizontally induced wind shear

— Ensuing areas of cyclonic/anticyclonic shear

are a function of the gradient and intensity of
the winds.

a

clonic Shea




Shear Induced Upward and Downward

Vertical Motion

* Cyclonic shear favors upward vertical motion

* Anticyclonic shear favors downward vertical motion

700

UVM DVM

850

SFC Cyclonic Shear Anticyclonic Shear




1000 hPa Streamlines & 1000 — 850 hPa
Thlckness
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.Blue shaded area hlghh-ghts the thlckness gradlent




1000 hPa Streamlines, 1000 — 850 hPa
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In weak CAA (white shaded), the tail of the front can degrade to a shear line




1000 hPa Isotachs (color filled)
1000 — 850 hPa Thiqkness (white dashed)
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Weak thickness gradient, with low level wind maxima along
the warm side to the south.




1000 hPa Isotachs, Wind Vectors , &

INDUT 4 CHARACTER COMMANDS AND DELIMITERS OR EXIT i . \ e 2 =
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Weak thickness gradient, with low level wind maxima along
the warm side to the south.




1000 hPa Streamlines, 1000 — 850 hPa
Thic vection
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In weak CAA (white shaded), the tail of the front can degrade to a shear line




Speed Shear Induced Shear Line
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Speed Shear Induced Shear Line

1000 hPa Isotachs and Streamlines
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Shear Line Due to Speed Shear




Shear Line Due to Speed Shear
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Frontal Shear Line
Directional vs. Speed Shear

Directional Shear 20180316 18Z

Speed Shear 20191228 127




Frontal Shear Lines
Can develop during the fall and through the Winter/early Spring

100W 90W aow‘) TOW-\ 7 60W,. T SeW

Impact: Storm total rainfall amounts of 250-
375mm over several days




Prefrontal Shear Line

Typical Progression
and

Evolution


















When to stop showing the front?

* When the surface observation no longer
show density difference across the old
boundary.

— Temperature contrast

— Td starts to increase
* Consider

— Upper Jet Support

— Presence (lack) of cold air cumulus



Prefrontal Shear Line

‘Basinwide Impact
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Impact: Storm total rainfall amounts of 250-500
mm over 36-48 hours (topo forcing and warm SSTs)




D)00-350 hPa ck & Wind: Front and Preifrontal Shear

o
Analysis
s S b LR LA L SR W - P R B omE L s ;-.w_ﬁ:ﬂf '-»_\_".'-»_‘ HpEr
ANN3 LVL=B015:.LYR=1000/350 :FHRE= 21.FHRS= 0/ 24::F[.2-TED200000 2 2002 ; T A A B Y

2008S 20200 0--THCE CIMS I 0TS &5 TR WIMD £ A I

—-——-lnstructions:

Identify . the thermal gradients
Using-wind direction, determine
type of advection (CAA; WAA,
Neutral) -

Find-the confluent-asymptote
Dogs 1t lies parallel or ahead of
the thermal gradient?

a. If parallel to.the gradient, not
shown




Satellite Applications

Differentiating between a front and a
frontal shear line.



Where 1s the Front?

* Present weather conditions can be a poor
indicator of where the front 1s in the tropics.

— Weather 1s a function of moisture convergence
and 1nstability

— Although we often see active convection 1n
association with polar fronts, having present
weather is not a requirement



IR Image: Front or Shear Line?

Instructions:

Fronts: In a CAA pattern
over the warmer oceans, look
for generation of shallow post
frontal convection.

Shear Line:

1. Narrow band of clouds

2. Dependenton upper level
support, normally see
deeper convective
development than with the ' #%
surface front




EPT and Winds
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INPUT 4 CHAFRACTER COMMANDS AND DELIMITERS OFR EXIT

GFS3:LVIL=1000:LYR=1000/ 850 :FHR= 12:FHES= 0/ 24:.FIL1=JAI221000.GF3003
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1000-850 Thlckness and Wmds
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Where 1s the Weather?




Weather with Fronts and Shear

Lines

* Where 1s the weather?
— Front, Shear Line, Prefrontal Trough?

 The weather 1s where the moisture

Cconverges.
e Typically along the shear line

— Or between the prefrontal trough and the shear line

» Since this 1s where the weather 1s most active, some
analysts can confuse the shear line with the front.



Conceptual Model — Cloud Cover and Weather

with Front and Prefrontal Shear Line

Downward Downward
0 Vertical Vertical
Motion Motion Cb
SOO I ‘ I ‘
o Upward
Vertical

.50 Fair v
F) C F) C P) C Weather Y
SFC I

In an upper convergent/subsident pattern, lacking upper support, a
shallow front enters the Caribbean, preceded by a shear line
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Poll Question #12

Frontal or Shear Line Convection?

2018-12-22 02:45:32 UTC S




Poll Question #12
(select one)

* A: Frontal, B: Frontal

* A: Shear line, B: Shear Line

e A: Shear Line, B: Frontal
A: Frontal, B: Shear Line




Poll Question #11

Frontal or Shear Line Convection?

2018-12-22 02:45:32 UTC S




Upwelling

» Strong low level winds accompany the
prefrontal shear line

* Strong winds moving off the coast will
normally result in cold water upwelling

— Colder waters = Convectively Stable

* Contrary to what the models forecast, this
will lead to decrease in convection the next
day following the event.



Dry Season Transition

- During the Fall transition
we often see strong

surges across the western
Caribbean

- These can drive the
ITCZ south of its
climatological position

- These surges often result
in cold water upwelling
- Marine layer
becomes
convectively stable

850 hPa Winds (KT)



Upwelling Eastern Pacific
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Cold water upwelling leads to marine layer becoming convectively stable



Normally, between November-mid December, the EPAC ITCZ
meanders over Costa Rica-Panama. Strong polar surges, like this

one, can drive 1t south. In late December, once it sets to the
south, it tends to remain.




Cold Water Upwelling
Gulf of Tehuantepec

10.3 um Split Window
10-3 — 12.3um



Cold Water &&= .
Upwelling L =T
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Case Study — December 1999

Poll Question #13
Focus of the Analysis SE Caribbean



Poll Question #13

The weather over northern Venezuela 1s due to:
(select all that apply)

 Frontal Convection

* Shear line / echo training pattern

e ITCZ



Oceanic Nino Index (ONI)
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- 1999 was a cold ENSO year




Conceptual Model

Low Level Flow Cool ENSO — La Nina

thag nor




Atmospheric Water Vapor

1999/12/14

SSM/I F14 v7 Atmospheric Water Vapor: 1999/12/14 - morning passes (local time) - Global
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ITCZ — NET During the Dry Season

- The Near Equatorial s
Trough (NET) migration "
over the continent 1s more
pronounced than the ITCZ
migration over the oceans.

North Atlantic Ocean

- Following the sun, the ;g

KILOMETERS
a 200 400 600 SO0 1000

NET over the continent s Al B
moves to northern Brazil-
Peruvian Jungle/eastern
Ecuador

MNorth Atlantic Ocean

- Dry season transition over
southern CENTAM
normally takes place o/a
December 20
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Atmospheric Water Vapor
1999/12/14

Water Vapor:

High PWAT content suggests ITCZ north of its climo
position, conditions often seen during La Nina.



Atmospheric Water Vapor
1999/12/14
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SSM/ F14 v7 Atmospheric Water Vapor; 1%??-}12."1& - morning passes (local time) - Global
High PWAT content suggests ITCZ north of its climo
position

Water Vapor:




Hem1spherlc WV 14-16 Dec 1999
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WYV Image
14 Dec/217 &15 Dec/217




Hemispheric IR 14-16 Dec 1999
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IR Animation 14-16 Dec




Hemispheric Vis 14-16 Dec 1999
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VIS Animation 14-16 Dec 1999

Cold front evident?
Shear Line?
ITCZ?



Poll Question #13

The weather over northern Venezuela 1s due to:
(select all that apply)

 Frontal Convection

Shear line / echo training pattern

ITCZ



Poll #13 Review IR 14-16 Dec 1999
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Question 13 Review
IR Image

endency 14 Dec/217Z &15 Dec/217Z




Question 13 Review
Vis Image
Tendency 14 Dec/18Z &15 Dec/187Z




Northern Venezuela

14-16 December 1999
“Tragedia de Vargas™




Vargas — Venezuela
14-16 December 1999

Echo training pattern over
three days

- ITCZ north of its

climatological position

- Shear line confluence
Rainfall

- 1-13 Dec: 293mm

- 14-16 Dec: 911mm
Impact:
$1.79 Billion in loses
Deaths: 30-50K
8,000 houses

700 apartment buildings | L Lo
p g .A:‘E“f&.&.‘. r?s”f '
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United States Geological Survey Open File Report 01-0144.
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Vargas — Venezuela
14 — 16 December 1999




