
NOAA Public Datasets on
Google Cloud

01/28/2024

Public Datasets on Google Cloud

Accessing and Using Public Datasets

Use Cases and Journeys

01

02

03

Public Datasets
on Google Cloud

01

Google Cloud Public Datasets is a carefully
curated and (mostly) Google managed dataset
catalog from various sources all around the
world, including weather data, shopping data,
crypto, and even Google’s own Search data.

Place Image Here

Datasets in Marketplace

● Google Cloud Marketplace is the
source of truth for datasets in
GCP

● Can search and filter through
what’s available

● No login required to browse
dataset entries

● All consumption of raw (non-
tabular, bucket) data is free

● BigQuery tabular data is charged
per query

An explosion of
satellite data

Source: NASA

70+ Petabytes
Growing daily

1 Petabyte
Monthly growth rate

Continuously
updated in

near real-time developers.google.com/earth-engine/datasets/

700+
Curated datasets

https://developers.google.com/earth-engine/datasets/

400k+
Scientists around

the world

8,000+
Scientific papers

Google Earth has helped users find amazing things

What is Earth Engine? | Code Editor

Your scripts,
Example scripts

API Docs

Your Assets Search Your Code Data Inspector

Batch Tasks

Output Console

Drawing
Tools

Output Map

code.earthengine.google.com

https://code.earthengine.google.com/

Featured NOAA datasets

Global Forecast System (GEFS)

A weather model created by the
National Centers for

Environmental Prediction (NCEP)
that generates 21 separate

forecasts to address underlying
uncertainties in the input data.

High Resolution Rapid Refresh
(HRRR)

3-km resolution hourly updated,
cloud-resolving, convection-
allowing atmospheric model.

Global Historical Climatology
Network (GHCN)

Integrated database of climate
summaries from land surface

stations across the globe.

Global Summary of the Day
(GSOD)

A dozen daily averages
computed from global hourly
station data, covering 1929 to

present.

Next Generation Radar
(NEXRAD)

High-resolution S-band Doppler
weather radars operated by the
National Weather Service (NWS).

Accessing and Using
Public Datasets

02

Google Cloud Datasets Marketplace

BigQuery is Google's fully managed,
serverless data warehouse for
structured data.

It supports querying using a dialect of
SQL.

There are more than 300 public
BigQuery datasets spanning
thousands of tables.

Where are public datasets stored?

Google Cloud Storage is a managed
service for storing unstructured data.

Buckets contain objects (a.k.a. files
and folders) that contain the data and
how they're organized.

There are more than 80 buckets
containing public datasets in various
file formats.

GEFS data in the GCP Marketplace

https://console.cloud.google.com/marketplace/produc
t/noaa-public/gfs-ensemble-forecast-system

1. The Google Cloud Storage bucket that stores the data is gfs-ensemble-forecast-system

2. Using a web browser, access the root of the bucket with the following URI*
https://console.cloud.google.com/storage/browser/gfs-ensemble-forecast-system

3. You can examine multiple levels of the bucket by appending the path to the URI above.

For example, to access the path gefs.20230815/06/atmos/bufr, use the URI
https://console.cloud.google.com/storage/browser/gfs-ensemble-forecast-
system/gefs.20230815/06/atmos/bufr

*You will be asked to sign in if you are not currently signed in

Access GEFS data using a browser

https://console.cloud.google.com/storage/browser/gfs-ensemble-forecast-system
https://console.cloud.google.com/storage/browser/gfs-ensemble-forecast-system/gefs.20230815/06/atmos/bufr

https://console.cloud.google.c
om/storage/browser/gfs-

ensemble-forecast-system

gsutil is a Python application that lets you access Cloud Storage buckets and contents from the command line.

To list objects from the root of the bucket:

$ gsutil ls gs://gfs-ensemble-forecast-system

gs://gfs-ensemble-forecast-system/gefs.20210101/
gs://gfs-ensemble-forecast-system/gefs.20210102/
gs://gfs-ensemble-forecast-system/gefs.20210103/
gs://gfs-ensemble-forecast-system/gefs.20210104/
gs://gfs-ensemble-forecast-system/gefs.20210105/
gs://gfs-ensemble-forecast-system/gefs.20210106/
gs://gfs-ensemble-forecast-system/gefs.20210107/
gs://gfs-ensemble-forecast-system/gefs.20210108/
...

Using gcloud storage has a similar effect:

$ gcloud storage ls gs://gfs-ensemble-forecast-system

Access GEFS data using the command line

To copy an entire prefix (directory tree) and its contents to the current directory*

$ gsutil -m cp gs://gfs-ensemble-forecast-system/gefs.20230812 .

*The -m flag enables multiprocessing to parallelize object downloads. Note that data for a single date
(i.e. a gefs.YYYYMMDD folder) is more than 100 GB in size.

Again, using gcloud storage has a similar effect (without the -m flag):

$ gcloud storage cp gs://gfs-ensemble-forecast-system/gefs.20230812 .

(For more info, see https://cloud.google.com/sdk/gcloud/reference/storage)

Access GEFS data using the command line

https://cloud.google.com/sdk/gcloud/reference/storage

https://console.cloud.google.co
m/storage/browser/gfs-

ensemble-forecast-system

Use Cases and
Journeys

03

● Nearly unlimited use

cases. Weather

observations for

agriculture, transportation,

finance, and energy sectors

● Climate change monitoring

● Disaster/risk management
○ Wildfires

○ Extreme Floods

○ Hurricanes, Tropical Storms,

and Extreme Weather

Weather Satellites: An

Invaluable Resource

● Global weather models available in

high resolution 4x per day for:

○ Business Analytics

○ Operational Forecast Needs

○ ML training and validation

Global Weather Models:

Another Invaluable

Resource

● Global weather model ensembles available

○ Use 30 perturbed + 1 control

forecast to increase your certainty in

how much uncertainty a model has!

https://developers.google.com/earth-engine/datasets/catalog/NOAA_GFS0P25
https://console.cloud.google.com/marketplace/product/noaa-public/gfs-ensemble-forecast-system#:~:text=The%20Global%20Ensemble%20Forecast%20System,perturbed%20and%201%20control%20members)

Quick code
example for JPSS
ATMS data on
GCP

Try this on your
own Colab!

https://colab.research.google.com

Setup your environment

for all the tools you will

need to accomplish your

task.

Setup

!pip install -q zarr xarray[complete] fsspec aiohttp requests gcsfs cartopy

from google.colab import auth
from google.cloud import storage

from datetime import datetime
import xarray as xr
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import os
import fsspec
import gcsfs

auth.authenticate_user()
fs = gcsfs.GCSFileSystem(project='something')

Start up your data set

and find the data you

want to work with. In this

case we are working with

JPSS MIRS data.

Instantiate client and

fetch blobs

Instantiates a client
storage_client = storage.Client()

The bucket name for the JPSS VIIRS data
bucket_name = "noaa-nesdis-n20"

def list_blobs(bucket_name, prefix, delimiter=None):
"""Lists all the blobs in the bucket."""

storage_client = storage.Client()
blobs = storage_client.list_blobs(bucket_name,

prefix=prefix, delimiter=delimiter)
Note: The call returns a response only when the

iterator is consumed.
results = []
for blob in blobs:

print(blob.name)
results.append(blob.name)

return results

results = list_blobs(bucket_name,
"NPR_MIRS_IMG/2023/09/15", None)

Alternative fetching method
results = !gsutil ls 'gs://noaa-nesdis-
n20/NPR_MIRS_IMG/2023/09/15/'

Get rid of 33 min data for this example
results = [results[i] for i in range(len(results)) if
results[i].find('33min')<0]
print('Number of files: ', len(results))

Isolate the files you want

to work with and add

some additional parsed

data.

Identify the files we

want to work with…

def parse_dates(string_names):
string_names = string_names[48:62]
year = int(string_names[0:4])
month = int(string_names[4:6])
day = int(string_names[6:8])
hour = int(string_names[8:10])
minute = int(string_names[10:12])
seconds= int(string_names[12:14])
string_dt = datetime(year, month, day, hour, minute,

seconds)
return string_dt

Create a dataframe and add datetime field from filenames
dfr = pd.DataFrame(results, columns=['Files'])
dfr['Date'] = dfr.Files.apply(parse_dates)

#Fetch data from an important time
lets_get = dfr[(dfr.Date >= "2023-09-15 15:30:00") &

(dfr.Date < "2023-09-15 23:30:00")]

Get Filenames
Lets_get = lets_get.Files.to_list()
print('Filtered to:', len(lets_get))

Show first 5 files
lets_get[0:5]

Process netcdf files and

plot using xarray and

matplotlib.

Open and process

each file

datasets = []
for file in lets_get:

data_path = 'gs://' + bucket_name + '/' + file
ds3 = xr.open_dataset(fs.open(data_path), engine='h5netcdf')

Reduce data set to Skin temperature data
datasets.append(ds3['TSkin'])

Concatenate all the data to make one image from all data sources
combined = xr.concat(datasets, dim='Field_of_view')

from cartopy import config
import matplotlib.pyplot as plt
import cartopy.crs as ccrs

ax = plt.axes(projection=ccrs.PlateCarree())
combined.plot.pcolormesh(x='Longitude', y='Latitude',
cmap='rainbow', transform=ccrs.PlateCarree())

ax.coastlines()
plt.show()

Quick code
example for JPSS
VIIRS Longwave
IR data on GCP

Try this on your own Colab!
https://colab.research.google.com

https://colab.research.google.com
https://colab.research.google.com

Setup your kernel for all

the tools you will need to

accomplish these

processing tasks.

Imports and Setup
!pip install -q zarr xarray[complete] fsspec aiohttp requests gcsfs cartopy

import h5py
import gcsfs
import matplotlib.pyplot as plt
from google.colab import auth
from google.cloud import storage
from datetime import datetime
import pandas as pd
import numpy as np
from cartopy import config
import matplotlib.pyplot as plt
import cartopy.crs as ccrs

auth.authenticate_user()

Making some useful

variables to limit data

processing to reasonable

size for processing on

basic Colab.

Setup variables for

data processing steps

bucket_name = "noaa-nesdis-n21"
target_data = "VIIRS-I4-IMG-EDR"
target_data_geo = "VIIRS-IMG-GTM-EDR-GEO"

year = '2023'
month = '09'
day = '15'
start_hour = '17'
start_minute = '13'
end_hour = '17'
end_minute = '17'

start_limiter = datetime(int(year), int(month), int(day),
int(start_hour), int(start_minute), 0)
end_limiter = datetime(int(year), int(month), int(day),
int(end_hour), int(end_minute), 0)
fs = gcsfs.GCSFileSystem(anon=True)

Find all the relevant data

from the IR sensor. In this

case we are working with

JPSS VIIRS IR data so we

are focused on the I4 band

and during our time range.

Instantiate client to

fetch IR data blobs

Instantiates a client
storage_client = storage.Client()

def list_blobs(bucket_name, prefix, delimiter=None):
"""Lists all the blobs in the bucket."""

storage_client = storage.Client()
blobs = storage_client.list_blobs(bucket_name, prefix=prefix, delimiter=delimiter)
Note: The call returns a response only when the iterator is consumed.
results = []
for blob in blobs:

print(blob.name)
results.append(blob.name)

return results

results = list_blobs(bucket_name, f"{target_data}/{year}/{month}/{day}/", None)

print('Number of files: ', len(results))

def parse_dates(s):
s = s[38:56]
year = int(s[1:5])
month = int(s[5:7])
day = int(s[7:9])
hour = int(s[11:13])
minute = int(s[13:15])
seconds= int(s[15:17])
string_dt = datetime(year, month, day, hour, minute, seconds)
return string_dt

dfr = pd.DataFrame(results, columns=['Files'])
dfr['Date'] = dfr.Files.apply(parse_dates)

lets_get = dfr[(dfr.Date >= start_limiter) & (dfr.Date < end_limiter)].Files.to_list()
print('Filtered to:', len(lets_get))
lets_get[0:5]

Start up your data set

and find the data you

want to work with. In this

case we are working with

grabbing GEO data.

Instantiate client to

fetch geo blobs

Instantiates a client
storage_client = storage.Client()

def list_blobs(bucket_name, prefix, delimiter=None):
"""Lists all the blobs in the bucket."""

storage_client = storage.Client()
blobs = storage_client.list_blobs(bucket_name, prefix=prefix, delimiter=delimiter)
Note: The call returns a response only when the iterator is consumed.
results = []
for blob in blobs:

print(blob.name)
results.append(blob.name)

return results

results_geo = list_blobs(bucket_name, f"{target_data_geo}/{year}/{month}/{day}/", None)

print('Number of files: ', len(results))

def parse_dates(s):
s = s[43:61]
year = int(s[1:5])
month = int(s[5:7])
day = int(s[7:9])
hour = int(s[11:13])
minute = int(s[13:15])
seconds= int(s[15:17])
string_dt = datetime(year, month, day, hour, minute, seconds)
return string_dt

dfr_geo = pd.DataFrame(results_geo, columns=['Files'])
dfr_geo['Date'] = dfr_geo.Files.apply(parse_dates)

lets_get_geo = dfr_geo[(dfr_geo.Date >= start_limiter) & (dfr_geo.Date <
end_limiter)].Files.to_list()
print('Filtered to:', len(lets_get_geo))
lets_get_geo[0:5]

Process data to numpy

arrays (online) and prep

for visualization.

Process all the data you

need for your project.

agg_data_lat = []
agg_data_lon = []

One file is ALOT of data
for file in lets_get_geo[1:2]:

r = 'gs://' + bucket_name + '/' + file
print(r)
f = h5py.File(fs.open(r), 'r')
latitude = f['All_Data']['VIIRS-IMG-GTM-EDR-GEO_All']['Latitude'][:]
print(np.array(latitude).shape)
longitude = f['All_Data']['VIIRS-IMG-GTM-EDR-GEO_All']['Longitude'][:]
print(np.array(longitude).shape)

If processing multiple files at once
for row in range(latitude.shape[0]):
agg_data_lat.append(latitude[row])

for row in range(longitude.shape[0]):
agg_data_lon.append(longitude[row])

agg_data = []
counter = 0

for file in lets_get[1:2]:
r = 'gs://' + bucket_name + '/' + file
print(r)
f = h5py.File(fs.open(r), 'r')
if counter < 1:
products = f['All_Data']['VIIRS-I4-IMG-EDR_All']

arr = f['All_Data']['VIIRS-I4-IMG-EDR_All']['BrightnessTemperature'][:]
print(np.array(arr).shape)
for row in range(0, arr.shape[0]):
agg_data.append(arr[row])

longitude[longitude<-900] = np.nan
latitude[latitude<-900] = np.nan

Plot numpy arrays using

matplotlib and cartopy.

Visualize Numpy

Arrays

from cartopy import config
import matplotlib.pyplot as plt
import cartopy.crs as ccrs

ax = plt.axes(projection=ccrs.PlateCarree())
plt.scatter(longitude[:, 2500:6500], latitude[:, 2500:6500],
c=arr[:, 2500:6500], cmap='Greys',
transform=ccrs.PlateCarree())

ax.coastlines()
plt.show()

Hurricane Lee

