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Why are satellite tools |mportant :
for ENSO monitoring? glads

e Satellite tools are key for the monitoring
of the ocean-atmospheric system.

e The key advantage is their high resolution
in space and time.

e Disadvantage: potential biases in
comparison with in situ observations
from ships, buoys and Argo Floats.

...also 85% of data ingested into
numerical models comes from

satellites! Models would be
terrible without satellite data.




Outline of Today's Presentation

e This session will focus on a general overview of the El Nino -
Southern Oscillation (ENSO) and the teleconnections, regional
trends, and effects, including drought, flooding, etc.

e We will present different satellite tools that can be used for the
monitoring and forecasting of ENSO. This includes a
description of the tool, access and application methods.

e We will look into some exercises that consider evaluating
some satellite product fields to discuss what might happen
with evolution of SST that might affect the ENSO system.



The WPC International Desks: Who are we?

NOAA-WMO Training program on weather https://www.wpc.ncep.noaa.gov/international/intl2.shtml
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Providing onsite training to forecasters from
institutions of the Americas via the Tropical and South
American Desks

Workshops and virtual training sessions.

Providing IDSS before and during extreme events,
including Tropical Cyclone Emergencies.

Developing and facilitating forecasting tools (R20)
Strengthening ties in the international weather
community.

Collecting feedback from international partners to
improve US NWS Services such as NWP and satellite
product improvements. Contact us at wpc.international@noaa.gov




Workshops and Training

What makes a workshop spectacular ?

e Considering it as an open shared discussion, where anyone
can contribute equally. Lets converse because every comment
is a contribution.

e In Geoscience there are no rights and wrongs. We are far from
knowing 100% and probably never will. There is no such thing
as a bad or unnecessary question or comment.

e The more we share and discuss, the more we learn as a group.
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Overview of the El Nino - Southern

Oscillation (ENSO)

and Global Impacts




El Nino-Southern Oscillation (ENSO)

e ENSO is the dominant interannual variability of Earth’s climate system.

e It is an oscillation of warming (El Niiio) and cooling (La Nifia) changes in the sea
surface temperature (SST) in the central and eastern tropical Pacific ocean, which
associate with changes in atmospheric circulations and climate.
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Phases of ENSO
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Why the name? ELl Nifo Southern Oscillation

El Niio (EN) Southern Oscillation (SO)
Peruvian fishermen in Spanish Viceroyalty Severe droughts in India in 1877 and 1888
times (1600-1800’s), used the term “El Niio prompted research. After several contributors,
current” to describe an annual warming of the Sir Gilbert Walker made the most coherent
ocean that occurred near Christmas time analysis and named the oscillation. The SO
(“Jesus child” or “El Nifio Jesus"). Refers to a ‘seesaw’ of the atmospheric
pressure between the Pacific and Indian
They used the term “El Oceans. S. Hastenrath, in Encyclopedia
Nino Phenomenon” when of Atmospheric Sciences, 2003

on occasions, the warming %

was extreme and caused

heavy rainfall, floods and Jakob Bjerknes is who made the first
changes in the fisheries. ENSO link between El Nifio and the Southern

Oscillation in the 1960's



ENSO Monitoring

ENSO is complex. Not easily measured with
one index.

Regardless Nifo-3.4/0NI CPC's official index
because:

e Highly correlated with other components of ENSO
(pressure, winds, convection).

Computational simplicity.

e Considerable development effort went into creating
long, quality-controlled records of SST (ERSST,
HadSST, COBE) that increase sample size and
enable comparisons with previous ENSO events.

e The +/-0.5C threshold enables NOAA to declare the
occurrence of El Nifio and La Nifia (user requested
definition)
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ENSO Recurrence

Oceanic Niio Index (ONI)
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But WHY do we care so
much about ENSO?

Because ENSO Impacts the weather

and climate globally, and these
impacts can be significant.

But these impacts depend as well on interactions
with other components of the climate system. We
cannot blame a weather event JUST on ENSO



ENSO Impacts



1998 El Nino
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Feb 1989 SST Anomalies
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Impacts occur Globally

EL NINO CLIMATE IMPACTS
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Teleconnection

“Relationship between changes in the climate in areas
separated by very long distances.”

Meteorological processes
(such as deep convection)
can alter circulations which,
in term, propagate
downstream.
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Teleconnection
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Impacts: Rainfall during La Nina
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Tropical Americas: Changes in the Walker Circulation

Very rainy in the Caribbean,
Central America and
northern South America

 Stronger Walker Circulation.

» Ascending Branch of the
Walker Circulation favors
more rain.

Intense rainy season—> Correlacién TSM Nifio 3.4 - Lluvias

La Nifa conditions
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Central American Gyre - CAG
May to October

* Low pressures that form in Central oo
America. They extend thousands of ve
km, can generate extreme Rainfall 58
and they can spun tropical ciclones. Ba
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Central American Gyre -

* Low pressures that form in Central
America. They extend thousands of
km, can generate extreme Rainfall
and they can spun tropical ciclones.

Convergence of long-fetch moist
onshore winds can produce extreme
Rainfall once interacting with the
mountains of Central America.

La Nifa associates with more frequent
and intense CAG events

Reference: Papin, Bosart and Torn, 2017: "A
Climatology of Central American Gyres".
https://doi.org/10.1175/MWR-D-16-0411.1
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Evento de Giro
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(CAG, "Central
American Gyre") ...
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de 2020.
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Spring drought in southeast South America

Junio a Noviembre

Se debilita el chorro subtropical y  Correlacién TSM Nifio 3.4 - Lluvias
desplaza muy al sur la trayectoria
de ciclones extra tropicales.

» Esto debilita el SALJJ (chorro de
capas bajas Amazonia-Argentina)
limitando la fuente de humedad.

Invierno

 Las tormentas pasan muy al sury
produciendo menos precipitacion
en el centro de Chile y en la mayor
parte de Argentina.

-

Impactos especialmente rw
en cultivos de soyay

maiz ocurren entre

setiembre y noviembre,

durante la primavera.

» Primavera: Sequias extremas en
Argentina/sur de Brasil/Uruguay,
donde usualmente suelen darse
muchos sistemas convectivos con
lluvias intensas.

Primavera
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Central Chile is generally drier during La Nina

Mayo a Octubre

~ 800
» Central and southern Chile generally receive les rain during £ ol . 0.
La Nifia and more during El Nifio winters. § - o 2o S
= *>
. T 200 - $ e e
« La Nifa dryness: Storm tracks usually develop further south £ ; y ¢ :
and atmospheric rivers tend to be weaker, drier. 20 a0 00 10 20 30

Figure 2. Precipitation for Santiago correlated with anoma-
lies of the SST (Niiio 3), April-September 1950-98.
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La Nina: Rainy Summer in Brasil with South
Atlantic Convergence Zone (SACZ) November-March

During La Nina, South Atlantic Convergence Zone

and an ascending branck of the Walker Circulation =

favor more precipitation in eastern Brasil.
Descending air and drought in northeast Argentina/south Brasil

compensate with ascending air and rainy conditions in central and =<
Eastern Brasil. e

SACZ more prominent and recurrent.

Flooding in eastern and
central Brazil becomes more
frequent during La Nifa.
The converse situation
occurs in southern Brazil
during El Nifo.




the Caribbean
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ENSO and Hurricane Season in the Caribbean
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ENSO and the Hurricane Season in the Caribbean

El Nino = Menos huracanes en el Caribe (Jun-Nov)

La Nina
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ENSO and the Hurricane Season in the Caribbean

Correlations with Nifno 3.4 SST
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ENSO and the Hurricane Season in the Caribbean

Correlations with Nifno 3.4 SST
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Background Concepts

e Ocean coupling.

e Wind stress.

e Sea Surface temperatures and their
role in atmospheric thermodynamics.



Ocean Coupling

How do the ocean and atmosphere communicate?

e The atmosphere “reads” the ocean by the
impact of sea surface temperatures (SST)

SST modulate atmospheric stability
and thermodynamics, eventually
inducing changes in the winds

e The ocean “reads” the atmosphere by the
impact of surface winds “pushing” the
ocean surface.

This is called wind stress (t) and
stirs superficial ocean currents.

Bjerkness Feedback: “
Atmospheric changes
alter the sea
temperatures that in turn
alter the atmospheric
winds in a positive
feedback.”



Role of fluxes and atmospheric reactions

Tropopausa

Viento Viento
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Océano
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calidas y frias de mar
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La atmdsfera reacciona calentandose y
enfriandose flujo abajo, desarrollando
dorsales y vaguadas anémalas



Role of fluxes and atmospheric reactions

Rossby Train favored by extensive coherent SST Anomalies
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300mb GEOPOTENTIAL HEIGHTS (dam)  31-DAY ANOMALY FOR:
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Kelvin Wave Generation Mechanism

Westerly Wind Bursts can trigger an oceanic
Kelvin Waves by inducing a bulging of the
thermocline

Depth (meter)
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Kelvin Wave Generation Mechanism

Below-surface warm pool in eastern Pacific growing larger
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Kelvin Wave Generation Mechanism

Evolution of the 1997-98 ENSO (2°S-2°N Averages)
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The Walker Circulation

Neutral conditions

Pacific Walker
Circulation
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The Walker Circulation

Trade Winds

Upwelling

Thermocline

120 130 140 150 160 170 180 170 160 150 140 130 120 110 100 90 80 70

Darwin, Australia S — Tahiti Lima, Peru



ENSO Modes

Anomalias de temperatura superficial del mar (°C)

 For an ENSO Warm or Cool Phase to be Enero 1998
declared, SST in Nino 3.4 needs to be >0.5°C :
or <-0.5°C over three consecutive trimesters.

» All that matters is what happens in Nino 3.4.

« The two main modes (not types) of ENSO B Y T v T BT Ry T
that result in Nifo 3.4 warmings and coolings _ Ener 2010
are: N Regién Nifio 3.4
1. Nino for the entire basin, with a peak onlg N

in the Eastern Pacific (Mode E)

2. The Central Pacific (Mode C)

120E  140E  160E 180 160W 140w 120w 100w B0W
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ENSO Predictability

There are still struggles. Models tend to exaggerate the probability of warm phases (El Nifios).

April is a low predictability month due weak SST gradients and hard-to-forecast non-linear
processes generated by deep convection near the equator.

Prondsticos NMME de El Niflo/La Nifia en el Pacifico central (regién Nifio 3.4) inicializados en abril*

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
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Satellite Products to Monitor ENSO




Satellite Products for Monitoring ENSO

It is complicated to speak about each instrument and what they do
In reality, products that we use are generated by a combination of
different satellite fields

We can start with the following question: What are the main fields
we can measure with satellite products?

Sea Surface Temperatures

Sea Level Height (Altimetry) <«Do we have a Kelvin wave?
Surface Winds «—Mechanical forcing of the ocean surface
Outgoing Longwave Radiation (OLR) / Precipitation products
—Deep convection over the ocean



Satellite Products: Sea Surface Temperatures

e Used to monitor SSTs, SST Anomalies, Coral Bleaching,
Degree Heating Week

e Products: [
o SST Contour Charts and CoralTemp SST by NESDIS: |
obtained from Infrared radiometer and microwave on ‘
board of Sentinel-3a, Sentinel-3b, Metop-B/C, GOES-
East/West, NOAA -18 & 19, GOES-16, GOES-18,
Himawari-9, and Meteosat-10.

—

o OSTIA: obtained from 10 different sensors such as
the Tropical Rainfall Measuring Mission Microwave
Imager (TMI), on board GCOM-W AMSR2, Metop-B/C,
Sentinel 3A & 3B.



https://www.ospo.noaa.gov/Products/ocean/sst/contour/
https://www.coralreefwatch.noaa.gov/product/5km/index_5km_sst.php
https://www.coralreefwatch.noaa.gov/product/5km/index_5km_sst.php
https://ghrsst-pp.metoffice.gov.uk/ostia-website/sstbrowser.html

Satellite Products: Altimetry

e The measure of the height of ocean features such as: (1) Sea level height
t and Ocean Currents

AL rPrey - o Sp— ¢ + A <

e Products: : =

o Radar Altimetry Database F— T RN
System (RADS) from NOAA 28 PEER o

Coast Watch Data Portal: =
obtained from radars on

board of Jason-3, AltiKa, .. ;

Cryosat-2, Sentinel-3A, and : RN -

z
v 2N Q) qeeazZt bl B 22024061 [}
‘ o .

Sentinel-3B i L

o OSCAR-3: obtained from
scatterometer on board of GPM
and Metop-B/C, Aqua, GCOM-
W, SMAP, DMSP, Oceansat-3
(coming very soon)

,,,,,,,,,,,



https://coastwatch.noaa.gov/cw_html/cwViewer.html
https://coastwatch.noaa.gov/cw_html/cwViewer.html
https://coastwatch.noaa.gov/cw_html/cwViewer.html
https://coastwatch.noaa.gov/cw_html/cwViewer.html
https://manati.star.nesdis.noaa.gov/datasets/OSCAT3Data.php

Satellite Products: Surface Wind

e Monitors the movement of winds over the
ocean surface
e Products:

o ASCAT - Advanced Scatterometer from
NOAA/NESDIS: obtained from
scatterometer on board of GPM and
Metop-B/C, Aqua, GCOM-W, SMAP,
DMSP, Oceansat-3 (coming very soon)

o NOAA NCEI Blended Seawinds (NBS):
obtained from the synthesization of
observations from multiple satellites to
create gridded wind speeds (10m,
neutral)



https://manati.star.nesdis.noaa.gov/datasets/ASCATBData.php
https://manati.star.nesdis.noaa.gov/datasets/ASCATBData.php
https://coastwatch.noaa.gov/cw_html/cwViewer.html?lat=27.00&lon=-80.80&z=3&date=20221112&layer0=basemapWI&layer1=chldineofnrtVIIRSd&layer2=nceiblendnrtwindd&layer3=nceiblendnrtwind6hrbd

Satellite Products: Precipitation/Deep Convection

e To determine deep convection/heavy rainfall/ over the ocean
e Products:
o Hydro-Estimator Rainfall by NOAA OSPO
m Uses IR brightness temperatures from geostationary satellites
(GOES, METEOSAT, MTSAT) while using NCEP model fields
o JAXA Global Rainfall Watch



https://www.ospo.noaa.gov/Products/atmosphere/ghe/
https://sharaku.eorc.jaxa.jp/GSMaP/index.htm

Exercises



Exercise

Winds and their effects in triggering
Kelvin Waves



Ascat Winds in the Equatorial Pacific

Question to discuss: what could this
situation cause in the ENSO system?



Kelvin Waves: Hovmoller of Winds and Heat Content

Westerly wind burts sometimes trigger oceanic

8 downwelling (warm) Kelvin Waves.

12
N This happens especially when these bursts occur

over the equatorial Pacific east of 140E or east of
Papua New Guinea

160CT2022

1NOV2022

16NOV2022

1DEC2022

16DEC2022

oN O

1JAN2023 -2
-4

- Anomalies are calibrated generally using 850 hPa
8l winds, which are often related to surface winds

~14 but not always.

-16

16JAN2023 1

1FEB2023

16FEB2023

1MAR2023 1,

- How do we analyze surface winds? Lets look at
ASCAT...

1APR2023 ‘

Source: CDAS, CPC (5N-5S) inm/s
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3)Cota buffer is 24 hra from 20230228 4) Block wind borke indicota poasible cortamination
NC&A/NESDIS /Carter for Satallita Applicaticna and Resaarch

Mote; 1il Tirmaz arg GMT 2)Times dleng bottem correapond ko measurament ak —55



ASCATIMETOP—B) 25KM MNOA Winds 20230226 descending
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Caota buffer is 24 hra from 20230228 4) Block wind borke indicota poasible cortamination
NC&A/NESDIS /Carter for Satallita Applicaticna and Resaarch

Feb 26, 2023
Descending



ASCATIMETOP—B) 25KM NO& Winds 20230228 ascendin
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March 1, 2023

Ascending
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ASCATIMETOP—B) 25KM MO& Winds 202303071 descending
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ASCATIMETOP—B) 25KM MO&& Winds 20230303 ascending

™
N
o
N
™
e
O
S
©
=

Ascending

u,_wa ﬁ@.m%wmwwh_»iw

o~ jd,mmﬂq
Nt

23
i g BT ]

L G

urament ot —55

correapond ko meas
NC&A/NESDIS /Cartar for Satallita &pplicaticna

alzng bottem
iz 24 hra from 20230303 4] Block wind borke indicata poasibls

re GMT 2)Tirmas

Cota buffer

Mote: 1) Timaz a
3



ASCATIMETOP—B) 25KM MO& Winds 20230303 descending
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February 26, 2023 - 850hPa

2.54° S, 153.64° E
Wind | 330°@ 6

AN b3

Data | Wind @ 850hPa

Date | 2023-02-26 00:00 UTC

Source ' GFS / NCEP / US National Weather Service

Scale | == |
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Mode | ' Air
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Height |

Overlay Wi

Projection |




— g 7 /
2.54°S, 153.64°E
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Scale | i
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Mode | | Air
Animate [ Wind
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Projection |

February 27, 2023 - 850hPa




Wind | 280° @ 21
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Data | Wind @ 850hPa

Date | 2023-02-28 00:00 UTC

Source I GFS / NCEP / US National Weather Service
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Control | P >
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Animate ] Wind

Height |

Overlay Wind

Projection \

February 28, 2023 - 850hPa

-1 hour




2.54°S,153.64°E
Wind | 290° @ 17
L W S e
Data | Wind @ 850hPa
Date | 2023-03-01 00:00 UTC
Source | GFS / NCEP / US National Weather Service
Scale | =
Control | « Vi | 4
Mode | | Air
Animate | Wind
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Overlay Wind

Projection |

March 01, 2023 - 850hPa




March 02, 2023 - 850hPa
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2.54°S, 153.64°E
Wind | 320° @ 12
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Data | Wind @ 850hPa

Date | 2023-03-03 00:00 UTC

Source I GFS / NCEP / US National Weather Service

Scale | = B |
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Height |
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Projection \




February 26, 2023 - 1000hPa
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Data | Wind @ 1000hPa
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Projection |

1000 hectopascals




February 27, 2023 - 1000hPa

2.54°S, 153.64° E
Wind | 290° @ 1

1o

Data | Wind @ 1000hPa

Date | 2023-02-27 00:00 UTC

Source [ GFS / NCEP / US National Weather Service
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Overlay Wind

Projection |
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2.54°S,153.64°E
Wind | 295° @ 19

Data | Wind @ 1000hPa

Date | 2023-02-28 00:00 UTC
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Projection |
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March 01, 2023 - 1000hPa
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Kelvin Waves: Hovmoller of Winds and Heat Content

850 hPa Zonal Wind Anomaly Heat Content Anomaly Hovmoller

o, * Westerly wind bursts
(oranges) can trigger
downwelling (warm)
Kelvin Waves that
propagate towards
South America.

1NOV2022
16NOV2022
1DEC2022 ¢

16DEC2022

1JAN2023

160AN2023 1

* Heat Content Anomalies
suggest potentially 3 of
these processes since
January: The latest
warm Kelvin is
propagating already
into 120°W.

1FEB2023

16FEB2023

1MAR2023 1,

16UAR20234

1APR2023 »

60E B80E 100E 120€

Source: CDAS, CPC (5N-5S) inm/s




Exercise 1 Summary

850 hPaZ | Wind Anomaly ASCAT(METOP—E) 25KM NOAA Winds 20230228 descending FthJ_ _‘hsnmﬂs . . .
b (TR Westerly wind bursts that trigger Kelvin
' y @iﬁ@%ﬂﬁ% Waves do not need to occur ONLY in the
3 Sy : i
0 fg %{%‘é%% equator, in the 5°N-5°S latitude belt or
8 & § - A R T 3 .
oY, S0 %;%%%i even 10°N-10°S latitude belt.
T SRl
i f g E e i\ﬁ «é;\ . .
P4 Qﬁ\ BT am Ay ASCAT winds from polar satellites are
o o L T T
i e sz o great tools to evaluate these westerly
-10 AN G :
-1 B Mﬂﬂ%-%: o wind bursts.
16 i Y Dl
)‘\3 Ty : . .
e o> It is best to compare to 850 hPa signals.
60E B0E 100E 1206 !M:I WN IM!M’Tﬁn ng E%ﬁ 183

Source: CDAS, CPC (5N-5S) in m/s

Tropical cyclones and/or an active South
Pacific Convergence Zone (SPCZ) can
trigger these westerly wind bursts that, in
term, can trigger warm Kelvin Waves that
propagate along the equator.

\
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Exercise

Altimetry: What is going on in the
Equatorial Pacific?



What could the anomalously low sea level in the

Eastern Pacific Mean?

When along the equator, a zonally-
oriented region of below-normal sea level
can indicate the presence of an Oceanic
Upwelling (cold) Kelvin Wave, which
sometimes relates to a developing La
Nifa.

Cold (warm) Kelvins do not always mean
that a La Nifa (El Nifio) are developing.

Altimetry data, from polar satellites, is
great to evaluate sea level anomalies that
can relate to these cold (warm) waves and
their potential impacts on the ENSO
system. Evaluating propagation is
important.

GODAS SSH Anomaly, 2024 Jun 12
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Exercise

Deep convection in Nino 1+2. What
happens next?



Cyclone Yaku forms in Nino 1+2, March 2023

Question to discuss: what could this
cyclone do to SST along the South
American coast?



Cyclone Yaku forms in Nifio 1+2, March 2023

Satellite estimated rainfall (March 10)

What weather situation is
occurring off the north
coast of Peru?

How could this affect
surface winds?



Cyclone Yaku forms in Nino 1+2, March 2023

The Day-Cloud-Phase RGB shows ice clouds in
yellows and reds and water clouds in light blues
g o B ¢

N\
¥
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NOAA Coral Reef Watch Daily 5km Sea Surface Temperatures (v3.1) 7 Mar 2023

-No data
ke -2 0 5 10 15 20 25 30 35 40 °C




NOAA Coral Reef Watch Daily 5km Sea Surface Temperatures (v3.1) 13 Mar 2023

-No data
[Cice -2 0 5 10 15 20 25 30 35 40 °C




NOAA Coral Reef Watch Daily 5km Sea Surface Temperatures (v3.1) 20 Mar 2023

-No data
[Cice -2 0 5 10 15 20 25 30 35 40 °C



Exercise 3 Summary

Westerly wind bursts associated with a weak
tropical cyclone-like feature (“Yaku”) developed
a local warming along the coasts of Peru and
Ecuador in March 2023.

These winds can trigger Kelvin Wave-like
features that catapult a deep-layer warming.

Since the sub-superficial layers were warmer
than normal already, the warming was very
strong and ended up triggering the beginning of
the 2023-4 El Nifo, in combination with other
processes present in the western Pacific.

The Madden-Julian Oscillation and an active
South Pacific Intertropical Convergence Zone
played a role enhancing Yaku's impact on
exacerbating the warming.



Some New Developments



CPC has worked on a new index, the RONI

Above the atmospheric boundary layer in the tropics, there is little
horizontal variation in temperature (small Coriolis). Tropical atmosphere | L _ -

quickly smooths out temperature gradients.

Surface conditions throughout the entire tropical basin (by modifying deep \

convection) sets the tropical temperature in the free troposphere. . fs{
‘ il 12

The free tropospheric temperature (or average SST across the entire g

tropics) is very important for the local instability, determining whether /

conditions are more/less conducive for rainfall.

————————

Relative SSTs take in account the average conditions across the entire
tropics and the local SSTs in a single measure. &



BOM is currently transitioning to use a relative SST index.
Their public-facing sites will display the relative SST index as their official ENSO index.

ONI minus Relative ONI (1961-1990 climo)

1.0
0.8 1
g 06
[2]
o 0.41
o
(%3] 02 4
g 0.0y n |||”"|! Y Ilhi"l A“ | \l' - l|||||| Illlﬂl ﬂ||“|h i, ‘N |||"||| \"ﬁ i|i i||‘||||“||l.‘ i|||||||”| || ” IN ||| u |
S -0.2- | |‘ W“l”llw II ‘II “ “‘I “WIII ||‘ l’w “ ll"'l“l BOM uses a 1961-1990 climatology,
—0.41 which means it is easier to hit EI Nifio
’ thresholds and harder to hit La Nifa
06 1950 1960 1970 1980 1990 ones B

Data: ERSSTv5
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Additional Slides

These slides are not organized, but contain information
that could be of use to you for understanding ENSO.



How ENSO impacts the weather and climate globally?

The impact on the tropics, the Pacific, and the Indian Ocean and surrounding
landmasses is well established. However the impact can many parts of the world.

Each phase can lead to severe droughts and devastating floods in different
parts of the world.

Warm Phase Rainfall Rainfall decreases Easterly winds Increase zonal wind vertical Inhibits tropical
decrease in In Central and weakens or change shear in the Atlantic cyclogenesis in Atlantic
Indonesia Eastern Tropical to westerly winds basin.
Pacific Ocean
Cold Phase Rainfall Rainfall decreases Stronger easterly Decrease zonal vertical shear Enhance tropical
increases in in Central and winds in the Atlantic cyclogenesis in the
Indonesia Eastern Tropical Atlantic basin
Pacific Ocean

> Neutral phase is been associated with strong SST anomalies in global oceans outside the tropical

Pacific, and significant anomalies of land surface air temperature and precipitation over all the
continents (Lin et al. 2019)



El Nino-Southern Oscillation (ENSO)

The El Nino-Southern Oscillation (ENSO) is
the dominant interannual variability of
Earth’s climate system.

An oscillation of warming and cooling
changes in the sea surface temperature
(SST) in the central and eastern tropical
Pacific ocean.

There are two extreme phase called EI Nino
the warming phase and La Ninha the cooling
phase and between these two a neutral or
normal phase.

ENSO warm or cold conditions occur every
few years and last for about a year.

(a) Normal conditions

Climate change
(b) Climate change (SST anomalies)

Adapted from Collins et al. (2010) and IPCC AR5 (2013).



Example of Warming in the Pacific

Sea Surface Temperatures (SST)

November 14th

5 4 -3 2 1 0 | 2 3 4 5 °C

NOAAOSPO R T NOAA Coral Reef Watch



Sea Temperature Anomalies in top layer

DEEP ANOMALIES LAST LONGER, THUS USEFUL FOR SUBSEASONAL FORECASTING

Surface Anomaly Top 300m- Layer Anomaly (GODAS)

MR "V

NOAA Coral Reef Watch NOAA CPC
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Satellite Products: Sea Surface Temperatures

e Monitoring SSTs to see a shift in cooler or
warmer temperatures in the four geographic NOAA CoralReettotch Belly Skm SST Anomelies (341 1o 2024
regions of the equatorial Pacific over a period E— 1~
of time.

e Used to monitor SSTs, SST Anomalies, Coral
Bleaching, Degree Heating Week

e Satellite products are helpful with in situ
observations

e Products:

o CoralTemp SST by NESDIS: obtained
from Infrared radiometer and microwave
on board of Sentinel-3a, Sentinel-3b,
Metop-B/C, GOES-East/West, NOAA -18
& 19, GOES-16, GOES-18, Himawari-9,
and Meteosat-10. It provides the nighttime
ocean temperature at the sea surface

o SST Contour Charts by NESDIS/OSPO



https://www.coralreefwatch.noaa.gov/product/5km/index_5km_sst.php
https://www.ospo.noaa.gov/Products/ocean/sst/contour/

ENSO: Oceanic Kelvin Waves

Equatorial Pacific Temperature Anomaly Cross Section

Equalorial Tempaerature Anomaly (*C)
Pentad centered on 10 SEP 2022

Depth {meler)

-]
=

Sub superficial positive anomaly under the
warm pool continues to build...

...no clear signal of propagation yet...
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A few months later...
Sea Surface Temperature (SST)

: -5 -4 -3 )
NOAA QSP.O il antaiTaiaEa NOAA Coral Reef Watch



Temperature Anomaly in Top Layer

DEEP ANOMALIES LAST LONGER, WHICH MAKES THEM USEFUL FOR SUBSEASONAL FORECASTING

Su rface Anomal

Top 300m- Layer Anomaly (GODAS)

NOAA Coral Reef Watch NOAA CPC
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ENSO: Oceanic Kelvin Waves

Equatorial Pacific Temperature Anomaly Cross Section Heat Content Anomaly Hovmoller

oy

ha J

Equatorial Pacific Temperature Anomaly
Peantad centered on 94 DEC 2022
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Example of Cooling in the Pacific
Sea Surface Temperature (SST)




Top Layer Temperature Anomaly

Anomalies in a layer take longer to dissipate than superficial ones, and can last for weeks.




Week centered on 27 SEP 2023
SST Anomaolies {*C)

120t 150E 180 150W 120% W



Equatorial Pacific Temperature Anomaly Cross Section
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ENSO: Oceanic Kelvin Waves
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A few months later...
Sea Surface Temperature (SST)

Anomalies

o NN

NOAA OSPO



Top Layer Temperature Anomaly

Anomalies in a layer take longer to dissipate than superficial ones, and can last for weeks.

Top 300m Layer Anomaly Surface Anomaly




ENSO: Oceanic Kelvin Waves

. e . EQ. Upper—Ocean Heat Anoms. (deg C)
Equatorial Pacific Temperature Anomaly Cross Section

Equatorial Temperature Anomaly {*°C)
Pentad centered on 07 FEB 2024
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Sea Surface Temperatures (°C)

NOAA Coral Reef Watch Daily 5km Sea Surface Temperatures (v3.1) 1 Feb 2021
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What is happening in the different points?
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