: ellite Meteorology, Oceanography, and Climatology (SatMOC) short course
John Cintineo (NOAA/NSSL), Scott Lindstrom (CIMSS)
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GOES-16 CONUS 2022-08-29 17:56 UTC




Outline

Overview of ProbSevere

ENSO and convection

ProbSevere v3 models

ProbSevere IntenseStormNet (satellite only)

ProbSevere LightningCast (satellite only)
o Deep-learning notebook introduction

Summary



Outline

Overview of ProbSevere

ENSO and convection

ProbSevere v3 models

ProbSevere IntenseStormNet (satellite only)

ProbSevere LightningCast (satellite only)
o Deep-learning notebook introduction

Summary



Overview of ProbSevere

1. ProbSevere v3 2. IntenseStormNet 2. LightningCast

GOES-East CONUS 2020-05-22T721:51 UTC GOES-16 Probability of Lightning [P(LTG)] in next 60 minutes
100 Point of interest: 25.65N -96.35W; Initial date: 2020-12-02
9201z
]
=
80

70

Jackson 60

MODERATE

050087

Probability of lightning [%]
I
o

o )2
Thru, 85152 2
304w
y 20 % w— P(LTG) within 2 km
, 102 FF i oo oo w21 |
waydesboro ‘ . § J GLM flash obs. within 50 km
i:i:::::ﬁﬁe(lﬁc)ﬁzﬁﬁﬁzﬁu
180 200 220 240 260 280 300 25% 50% 90%
ABI 10.35-um brightness temperature [K] Probability of intense convection
ML models for nowcasting large hail, Deep-learning model using only Satellite-only deep-learning model for
wind gusts, and tornadoes satellite images to detect “intense” nowcasting lightning

parts of storms
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Artificial Intelligence

&

Machine Learning

//."
4 4

Ix

Deep Learning

https://datawider.com/how-deep-learning-is-different-from-machine-learning/

ARTIFICIAL INTELLIGENCE

A technique which enables machines
to mimic human behaviour

MACHINE LEARNING

Subset of Al technique which use
statistical methods to enable machines
to improve with experience

DEEP LEARNING

Subset of ML which make the
computation of multi-layer neural
network feasible



) Al, ML, and deep learning

CIMSS

Key
“ Differentiation

Machine Learning Factors U

Problem-Solving

Manual Extraction Minimal Human Intervention

Approach
Supervised & i Autoencoders & Generative
Reinforcement Learning Trainiing Methacds Adversarial Networks
Diverse Models Complexity of Algorithms Interconnected Neurons
Relatively easy Interpretability Relatively difficult

Requires relatively less data Ll Requires relatively more data

CPU is usually fine GPU is usually required (for training)

Modified from https://nextgeninvent.com/blogs/machine-learning-vs-deep-learning/



Outline

Overview of ProbSevere

ENSO and convection

ProbSevere v3 models

ProbSevere IntenseStormNet (satellite only)

ProbSevere LightningCast (satellite only)
o Deep-learning notebook introduction

Summary



* U.S. National Weather Service definition:
e Storms that produce...
o hail 2 1”-diameter (25 mm)
o wind gust of 2 58 mph (50 kt)
m Measured or estimated
o tornado

ibm.com
T

NWS La Crosse




ENSO and convection

How do we get severe weather?
e Avariety of ways, but they have 4
ingredients in common:

o Shear
o Lift
o Instability

o Moisture
e Without these, the chance of severe
weather is “SLIM”.



M@mmwmmbmmwapm on itself
mwmmmmhgmmnder

&WM&&WWHI energy
purtiSueehyaBiarashuizn ks edifaesenaigodde
stormaéeadetiritdpE€AMSisture to form and
pmodsiretightGARE = stronger storm updraft

o strong updrafts are important for hail
generation, in particular.

[ 1r

atmosphere without atmosphere with
vertical windshear vertical windshear
== updraf == downdraf

credit: Colorado State University

https://youtu.be/LYubHPEMTPM

10


http://www.youtube.com/watch?v=LYubHpEMTPM&t=72

(

https://youtu.be/z-oijdylBcQ

“climatology” — when and where do
certain atmospheric conditions or
phenomena occur, on average

Severe weather can occur anywhere in
the U.S., but most of it occurs in the
eastern % of the country, April through
August

Different parts of the country have
different severe-weather seasons

11


http://www.youtube.com/watch?v=z-oijdylBcQ

: Nifio 3.4 Region

https://www.ospo.noaa.gov/Products/ocean/sst/monthly_mean_anom.html

12



£ ENSO and convection

CIMSS

3 1 ] ] ] ] ] ] ] ] ] ] 1 ]
o El Nifio
29 Very strong e i i
2 A
Stron
1 .5 ‘ g ‘ 4 i
Y . oderate ) | ‘
5 Weak
_g 0.5 -
= 0 B
=z
O -05 N
1 Weak
Moderate
-1.5 ' t
3 Strong |
56 La Nina

T T T T T T T T T T T T T
1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

https://origin.cpc.ncep.noaa.gov/products/analysis monitoring/ensostuff/ONI v5.php

13


https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php

ENSO and convection

How does all that oceanic heat wobble affect

severe weather?

15 Largest Tornado Outbreaks,1880-1990
relation to ENSO Events

Date Total Tornadoes ENSO Phase
1. Apr 3-4, 1974 148 Cold

2. Sep 19-23, 1967 m Neutral

3. Mar 20-12, 1976 66 Cold

4. Jun 2-3, 1990 64 Neutral

5. Apr 2, 1982 61 Neutral

6. Mar 13, 1990 59 Neutral

7. May 8, 1988 57 Warm  <—
8. May 25-26, 1965 51 Cold

9. May 4-5, 1959 49 Neutral

10. Apr 11-12, 1965 48 Cold

11. Jan 9-10, 1975 47 Cold

12. May 15-16, 1968 46 Cold

13. Apr 21, 1967 45 Neutral

14. Jun 7-8, 1984 45 Neutral

15. May 29, 1980 44 Neutral

Source: Grazulis 1991

14



ENSO and convection

v
\

Typical El Nino Storm Tracks

1 X ’_;l' 5

-

—




ENSO and convection

How does all that oceanic heat wobble affect
severe weather?

Figure 1: Composite mean anomalies of winter (December, January, February) hail
and tornadoes conditioned on the winter ENSO state.

a DIJF hail index El Nifio b DJF tornado index El Niflo
50 = — /__jt, N
FETH N
_ a5 . I T s /‘*-ﬁ
L 40
.~ £ e
El Nifio £ VRS
-
254, \L\k\ Al
c DJF hail index La Nifia d
50 + — P
/{w
o 451 . g
z
L 404 -
"~ o -
B | Allen et al. (2015)
La Nlna :‘3 35 | https://www.nature.co
= 304 \g\ ,_\l : m/articles/ngeo2385
254 %\\\ 5 oy
-1.0 -0.5 00 05 10
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ENSO and convection

How does all that oceanic heat wobble affect
severe weather?

Figure 2: Composite mean anomalies of spring (March, April, May) hail and tornadoes
conditioned on the spring ENSO state.

a MAM hail index EI Nifio b MAM tornado index 1 Nifio
50 ‘ X -
45
2 feis .
EINifio §5] O
=
Ino :‘3 35 ..:: ::_
L - ,ic-_
A%y
25 \L\\ . : P
c MAM hail index La Nifa d
50 y
. 45
&
a Nif 2™ Allen et al. (2015)
8 en et al.
a Ina :_i-‘ 35 https://www.nature.co
3 2 m/articles/ngeo2385
25
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b i) ProbSevere v3

CIMSS

High-resolution - Pl ¢ e (t To’iall Lidghtnibng |
! errestrial and spaceborne
NWP Data (HRRR) GOES imagery and h

*

Probability a thunderstorm will produce severe hail,
wind, or a tornado in the future (up to 60 minutes)

19



ProbSevere uses radar, satellite,
environmental, and lightning data to predict
next-hour severe-weather probabilities.
ProbSevere models (gradient-boosted decision
trees):

o probability of

o probability of

o probability of severe wind

o probability of tornado

ProbSevere identifies and tracks storms in
both radar and satellite imagery across the
lower 48 U.S. states

Extracts features or predictors within storm
objects from meteorological data

Used operationally throughout the NWS
o a “decision aid” to help forecasters issue

severe-weather warnings 20



ﬁ; e Ny , » Storm objects contoured around radar data
lf B ki o colored by probability of severe
' ; ' o allows forecasters to monitor
radar/satellite data and still get the
ProbSevere probabilities

Saratoga

; Pwv3 26%; PTv3:
; pwv2: 94%; ptv2: 1"

i

VIL Density: 3 1g/m"3

ENI Flash Rate: 53 fl/min

ENI Flash Density: 0.69 fl/min/km"~2

Max LLAzShear: 0.012 /s

98% LLAzShear: 0.007 /s

98% MLAzShear: 0.004 /s

Norm. vert. growth rate: N/A

EBShear: 48 kts; SRH 0-1km AGL: 149 m"2/s5"2

MUCAPE: 1248 J/kg; MLCAPE: 1016 J/kg; MLCIN: -224 J/kg

MeanWind 1-3kmAGL: 36 kts

Wetbulb 6C hgt: 12.8 kft AGL

CAPE -10C to -30C: 349 J/kg; PWAT: 1.8 in.
GLM: max FED: 2 fl; sum FCD: 2 f1/5-min
GLM: max TOE: 3 fJ; min flash area: 70 km"2
ObjectID: 390320
39.66dBZ
43.33N 91.92W 0.00

Display is AWIPS, used by U.S.
NOAA/CIMS? ProbSevere Model (°o) Wed 16 62 1 22 Natlonal Weather SerV|Ce

MRMS Merged QC Comp  Wed 16::@6Z 18-Jun-22




o g™ ,, , » |f a forecaster hovers over a storm with their

™ -spﬁla;
| f;‘”"- - 3 i cursor, they can see the specific
' ‘ “‘ severe-weather probabilities and predictor
values

o Radar, satellite, lightning, and
environmental information about the

storm
: o This helps forecasters understand how
s i st i ey prgs a2 T 16:307 Ved changes in the storm data affect
1 94%; s PwWv2: 94%; ptv2: 1%, . e
_ changes in the probabilities.
* ENI Flach Densitys 0.69 FU/min/kn"2 ' u ”
- Max LikzShear: 0.012 /5 T m helps unpack the “black-box” of ML

- 98% LLAzShear: 0.007 /s " | ...

- 98% MLAzShear: 0.004 /s Ea

- Norm. vert. growth rate: N/A d I
- EBShear: 48 kts; SRH 0-1km AGL: 149 m"~2/s°2 mo e s'
- MUCAPE: 1248 J/kg; MLCAPE: 1016 J/kg; MLCIN: -224 J/kg

- MeanWind 1-3kmAGL: 36 kts

- Wetbulb 6C hgt: 12.8 kft AGL

- CAPE -10C to -30C: 349 J/kg; PWAT: 1.8 in.

GLM: max FED: 2 fl; sum FCD: 2 f1/5-min

GLM: max TOE: 3 fJ; min flash area: 70 km"2

ObjectID: 390320

39.66dBZ

g3.33N 91.92W 0.00

Display is AWIPS, used by U.S.
NORA/CIMSS ProbSevere Model (%) Wed 16:06Z 13- Nat|0na| Weather SerVICG

-22
* MRMS Merged QC Comp Wed 16062 13-Jun-22 22

P
National SVR Warnings Wed 16:08Z 15-Jun-22
i ! [t By Ak




*Rushville

- VIL Density: 2.7 g/m"3
- ENI Flash Rate; 4 fUmin
1 0. 15 f1/min/kn~2

8 /s
h rate: Mature storm
SRH 0-1km AGL: 29 m~2/s"2

- MUCAPE: 1238 J/kg; MLCAPE: 975 J/kg; MLCIN:

- MeanWind 1-3kmAGL: 22 kts

kft AGL

372 J/kg; PWAT: 0.9 in.
GLM: max FED: 5 f1; sum FCD: 5 f1/5-min
GLM: max TOE: 24 fJ; min flash area: 70 km"2
ObjectID: 327582
31.86dBZ

-8

Probabllity [%]

0
1940

® Forecasters can click on a storm and get a
recent history of the ProbSevere models’
probabilities

T — ® ProbSevere trends in storms can help
forecasters decide to issue or not issue a

severe-weather warning.

19:50

2000

000 2020 2030 2040 2050 2100 2010 2120 2130
Time [UTC]

National SVR Warnings Tue 20:34Z 67-Jun-22

* NOAA/CIMSS| ProbSevere Model (%) Tue 20:34Z 07 Jun-22
Try MRMS Merged QC Comp Tu 2 -

Display is AWIPS, used by U.S.
National Weather Service

23



e Outer storm-object contour is colored by
probability of tornado
o Only appears when above some
threshold
it e s e Enables forecasters to see both the severe
‘ threat (hail or wind) and the tornado threat
A gl I at the same time.

psv2: 66 : puv2: 66%; ptvz: ST
- MESH: 1.18 in, °F '

- VIL Density: 2.7 g/m"3_

- ENI Flash Rate /mis

- ENI Flash Density: ©. 15 fl/mln/km’\Z

- Max LLAzShear: 6.011 /

© 9% LLAsShear: 0.008 /o=

- MLAzShear: 0.068 /s

1 [- Norm. vert. growth rate: Mature storm
|- EBShear: 68 kts; SRH 0-1km AGL: 29 m“2/5"2 i
. WUCAPE: 1238 J/kg; MLCAPE: 975 J/kg; MLCIN: -8
- MeanWind 1-3kmAGL: 22 kts
kft AGL
CAPE -10C to - 72 J/kg; PWAT: 0.9 in.
: : m FCD: 5 f1/5-min "

W ek T08 3415, i fsh area; 70 2 5 oo oo

31.86dBZ ULOGG]

*Rushuille

National SVR Warnings Tue 20:34Z 67-Jun-22

* NOM/CII‘ISS ProbSevere Model (%) Tue 20:34Z 07-Jun-22
Try MRMS Merged QC Comp Tue 4Z 07-Jun-22

Display is AWIPS, used by U.S.

National Weather Service
24



69

&

&9

: e Decision aids like ProbSevere can help
River : T T forecasters perform triage in busy
situations, that is, prioritize threatening

storms to investigate and make warning
decisions.

heboygan

"RicHland
Center

‘vlat% rtown ‘

"We
\‘ A3s

Tornadic, severe, and non-severe
storms in Wisconsin, USA

faukegan
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Alrport <],
| N Display is AWIPS, used by U.S.
- S National Weather Service
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ProbSevere v3

Decision plots

~10 -8 _6A 4
flash_rate
max_mesh
max_vil
max_compref (64)
max_mlazshear (15)
LAPSERATE_03KM_merged_smoothed (5.257)
SRW46KM_merged_smoothed (38.547)
max_llazshear (9)
p98_mlazshear (9)
i 0.0133 nullSVRFGF Valid 04:39Z Tue 05Sep23 Thru 05:45Z T
max_titg_density (0.453) PSv3: 80% PHV3: 56% ,lpwvz 72% PTv3: PPTTE =
psv2: 83%; pth 73%; pwv2 %; ptv2: Oa
EBS _merged_smoothed (37.949) - MESH: 1.31 in.; VIL: 57 g/mAZ
O - - ENI Flash Rate: 88 fl/min
p98 llazshear (5) N
|- 98% LLAzShear: 0.005 /s
WFTRLII R 0C HGT meraed smoothed (3.918.517) - 98% MLAzShear: 0.009 /s
e T v e - Norm. vert. growth rate: N o
icp ©017) e Tt S 10 o
- LR 0-3km: 5.3 C/km; Max LR 2-6km: 8.0 C/km
o - MUCAPE: 1048 J/kg; MLCAPE: 358 J/kg; MLCIN: -135 J/k
MEANWIND_1-3kmAGL_merged_smoothed (25.007) - Wetbulb oC hgt:lg.g kft AGL; PUAT: 1.7 in ’
. GLM: max FED: 27 f1; sum FCD: 75 f1/5-min
maxrc_emiss (nan) . GLM: max TOE: 173 fJ; min flash area: 80 km"2
> v SI%-cobjectID: 433213
SRW02KM_merged_smoothed (24.749) Gran
SFC_LCL_merged_smoothed (747.692) . Natl%\al SVR Warnings Tue 05:16Z 05-Sep-23
NOAA/CIMSS Probﬁgvere Model (%) Tué 05:16Z 05 +Sep-23;
MLCAPE_merged_smoothed (357.68) “ai
MAX_LAPSERATE_26KM_merged_smoothed (7.958)
-10 -8 -6 -4 2 0

Model output value
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Objective: identify convective regions
with one or more visual indicator of an
intense updraft (satellite indicators often
precede other indicators)

Labeled data: >200K human expert
labels

Input data: ABI (0.5-km visible and 2-km
IR window) and GLM flash-extent
density imagery

Output data: intense convection
probability maps

Applications: utilized in ProbSevere v3,
satellite-only nowcasting tool, process
and climate studies

GOES-16 CONUS 2020-05-22 23:16 UTC

193 205 217 229 241 253 303 —— 25% 50%  —— 90%
ABI 10.35-um brightness temperature [K] Probability of intense convection

WAF Cintineo et al. 2020

29


https://cimss.ssec.wisc.edu/severe_conv/training/Cintineo_Weather_Forecast_Dec2020.pdf

IntenseStormNet

What is a convolutional neural network (ConvNet) and how does it work?

e Deep-learning algorithm that uses images as input, and assigns importance
(learnable weights and biases) to various aspects/objects/features in the image
and is able to differentiate between classes (in our case).

e With enough training data, ConvNets have the ability to learn -
filters/characteristics.
e ConvNets learn salient spatial and multispectral features in images.
® “The role of the ConvNet is to reduce the images into a form which is easier to (011]1]0(0]
process, without losing features which are critical for getting a good prediction” Image EontVOWGd
eature

— CAR
— TRUCK
— VAN

E’] E.] — BICYCLE

INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING FLATTEN CO:JUNL::TED SOFTMAX

Y ki

FEATURE LEARNING CLASSIFICATION

30


https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

Image input: GLM
flash-extent density

Image input: ABI
CHO02 and CH13

IntenseStormNet

Scalar input: latitude, longitude,
solar-zenith angle, satellite-zenith angle

256

4

Fully connected layers

> ‘*" \>{V } >
' 1
Vel | B
= 128
e J
Probability of

intense convection




IntenseStormNet

Storm tracks of
training database

32



Works day and night

CONUS or Meso scans
GOES-East or -West
Doesn’t require radar

Near-real-time output
available at CIMSS



https://docs.google.com/file/d/1iSTZWd4Yzi5oXHssWKVP1M__dUvHeqv6/preview

GOES-16 Mesoscale-2 2022-05-01 20:31 UTC

1-min Meso sector
South/central Texas

Shows good
correspondence with

reports
o hail 2 25mm diameter
o wind =50 kt or
property damage

o tornado ¥ s A =
& ; ¥ e Wind
b Ty g _ : e Tornado
193 205 217 229 241 253 303 25% 50%  —— 90%
ABI 10.35-um brightness temperature [K] Probability of intense convection
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https://docs.google.com/file/d/1ktIKSWT7D52mBUsrROIobTSXknoEsV4s/preview

Southeast U.S.

Some linear convective
structures mixed with
supercells

Good transition to night (i.e.,
loss of 0.64-um reflectance)

Underestimation where zero
or very low lightning

GOES-16 CONUS 2022-11-29 17:36 UTC

Hail
e \Wind
e Tornado

| A W )5 50% —— 90%

193 205 217 229 241 253 303 - . .
ABI 10.35-um brightness temperature [K] Probability of intense convection
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https://docs.google.com/file/d/1tekR1M-Usq8LBt76Xll2OUVs1XxsqPOM/preview

1-min Meso sector
Argentina

Hail, wind damage, and
widespread flash

flooding

50-dbZ echo top ~20 km
on storm near Cérdoba

GOES-16 Mesoscale-2 2019-01-25 17:11 UTC

2 2 25%
193 205 217 229 241 253 303 50%
ABI 10.35-um brightness temperature [K]

90%

Probability of intense convection
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https://docs.google.com/file/d/111Hbpdpjy88xXIy6_FZFBe2pPB1Zcntj/preview

Successive permutation rank

No permutation

ABI CH13 BT

GLM flash-extent density Image

inputs
ABI CHO2 reflectance

More important

e daytime-only sample

® GLM flash-extent density more ~
important than ABI 0.64-um
channel

satellite zenith angle

Predictor perm

mean latitude

Scalar inputs ¢
solar zenith angle

mean longitude -
From Cintineo et
. al. 2020 (WAF)

0.0 0.2 0.4 0.6 0.8 1.0
Area under receiver operating characteristic curve (AUC)
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https://cimss.ssec.wisc.edu/severe_conv/training/Cintineo_Weather_Forecast_Dec2020.pdf
https://cimss.ssec.wisc.edu/severe_conv/training/Cintineo_Weather_Forecast_Dec2020.pdf

£ IntenseStormNet

IntenseStormNet

The IntenseStormNet model uses GOES ABI and GLM data to detect the most intense regions of convection probabilistically. The model is a convolutional neural network that can be run in real-time on CONUS or mesoscale sect
domains with geostationary satellite coverage.

cimss.ssec.wisc.edu/severe_conv/icp.html

2 #Tools ~ | Share 2022-12-13 15:46UTC
Animation & Times ) [+ ] 31.33°N 87.68°W

s

B

*Only run over
CONUS, currently

Products & Layers
Collection: RealEarth &
* Presets (@ Products | @ Displayed

IntenseStormNet -
GOES-East CONUS

2022-12-13 15:46:00

GOES-East GLM FED
CONUS

2022-12-13 15:46:00

GOES East ABI ConUS
B02 Hi-Res "Red" Visible

2022-12-13 15:41:17

GOES East ABI ConUS
B13 "Clean™ Infrared
enhanced

2022-12-13 15:41:17

./—
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LightningCast

Objective: determine where lightning is
most likely to occur within a forecast
time interval

Labeled data: millions of GLM lightning
records

Input data: ABI (0.5-km visible, 1-km
SWIR, and 2-km IR window)

Output data: location-specific,
probabilistic lightning nowcasts

Applications: satellite-only nowcasting
tool for protection of life and property,
process and climate studies

GOES-16 CONUS 20210127-2121 UTC

" a2

Visual indicators:
glaciated cumuliform
cloud tops, vertical

extent, textual patterns

— 10% = 50%
0.0 0.5 1.0 10 30 50 70 S 25% — 75%

ABI 0.64-um ref [] Max GLM FED [fl (5 min)~1]

Probability of lightning in 60 min

WAF Cintineo et al. 2022
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https://doi.org/10.1175/WAF-D-22-0019.1

LightningCast

® Use an image-based Al model: convolutional neural WAF Cinfineo et al. 2022
network 4 16 16 # of feature maps 32 16 16 1
o LightningCast model is “U-net”
o Learns salient spatial and multispectral features

v
\4
v
2-D probability map

2944 x 3328 spatial dimensions

e Predictors (GOES-16 ABI):

o 0.64-pm reflectance (0.5 km) g _)H N
o 1.6-um reflectance (1 km) Day-cloud-phase RGB LR .
o 10.3-um BT (2 km
H ( ) Split-window difference ﬁﬂ_ﬂ_)@ 18 128 256 12: ; D ] festurs maps
© 12.3-um BT (2 km) Yl b == [ b ] > rexpo 22
§ max pool 2x2

—> up-conv 2x2
—> conv 1x1, sigmoid
==> copy + concatenate

e Target / Truth (GOES-16 GLM): )
o next-hour maximum accumulation of GLM flash-extent
density (= 1 flash)
o Optical sensor (single band: 777.4 nm)
o 8-km resolution J

e Output: Probability of lightning at any location within the
next 60 minutes
o 2-km spatial resolution

41

GLM flash-extent density [fl (5 min)~1]


https://doi.org/10.1175/WAF-D-22-0019.1

Al LightningCast

CIMSS

w 25% w——50% @ w—c]5%

Probability of lightning in 60 min

e Obijectively quantify the day-cloud-phase RGB and
split-window difference.




£y LightningCast

CIMSS

0.8

0.7 1

o
o

o
]

Score or prob. thresh.

e
N

0.1

e
S

o
w

Best CSI and probability threshold

== CSI (day)
== (Sl (night)
~—eo— Prob. thresh.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov
Month

Déc

Better performance better during the day
(still predicts initiation well at night)

Better performance April — October
o Higher “most skillful” probability threshold
November — February (50-60%)

Conditional event frequency [lines]

1.0
=
I 0.9
I
1 Log ¥
0.8 _I 0'8 g
! 0.7 &
' g
it L 0.6 &
0.6 41 o
I N
i 05 §
. 3
0.4 41 ro0.4 g
I o
| 03 9
1 T
0.2 ! o2 E
| z
: 0.1
0.0 42 0.0
0.0 1.0
Forecast probability

Some over-forecasting bias

Primary goal of LightningCast: predict lightning
initiation

Lead time to first GLM flash

o

O
O
o

First quartile: 5-10 min
median: 15-20 min

Third quartile: 30-35 min

Similar stats for 30-60% prob. thresholds
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Available in AWIPS, GRLevelX, internet
o AWIPS: parallax-corrected and uncorrected
o  GRLevelX: parallax-corrected only

GOES-East

o CONUS (5 min)

o MESO1 and MESO2 (1 min)

o OPC/TAFB offshore zones (10 min)
GOES-West

o PACUS (5 min)

o MESO1 and MESO2 (1 min)

O Alaska and western Canada (10 min)

o American Samoa (10 min)
Himawari AHI

o Guam area-of-responsibility (10 min)
Dashboards (via internet)

o TAF airports

o D1 college football stadiums

LightningCast

cimss.ssec.wisc.edu/severe_conv/pltg.html

e ¢ > ¥
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Example 1: Florida peninsula

“Natural Color” RGB
R = 1.6-um refl.

G = 0.86-pum refl.

B = 0.64-um refl.



https://docs.google.com/file/d/1PjqJ1CEQDej65sGzhrivZJZVxiUBQlyk/preview

LightningCast

Example 1: Florida peninsula

GOES-16 CONUS 2022-09-06 18:56 UTC

50 min of lead time

“Natural Color” RGB
R = 1.6-pm refl.

G = 0.86-pum refl.

B = 0.64-pm refl.

45 min of lead time

25 min of lead time _-»O

5 10 15
GLM flash-extent density [fl (5 min)~1]

20

- 10%

10 min of lead time

® Lead time measured from
25% threshold to 1st
GLM-observed flash

e Few false alarms

e Cintineo et al. (WAF 2022)
and forecaster testbeds
found that LightningCast
provides 2 20 min of
actionable lead time to

initial flash 50% of the time.

46

30 min of lead time

35 min of lead time

25%  ww= 50% === 75%

Probability of lightning in 60 min
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Day Cloud-Phase RGB
R =10.3-um BT

G = 0.64-pm refl.

B = 1.6-um refl.

Example 2: Central U.S. (1-min updates)
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https://docs.google.com/file/d/1T81OX3sexGox-_YQlOLN_5VBXGKg1mGB/preview

il LightningCast

CIMSS

Example 2: Central U.S. (1-min updates)

GOES-16 Mesoscale-2 2021-07-14 20:09 UTC

@:l’;
- - b e Llayerwise relevance propagation (LRP)
=i - e Outputs “relevance” of each pixel for each input channel
“ e Shows which pixels contribute or detract from the prediction
y e Used iNNvestigate Python package:
https://github.com/albermax/innvestigate
o  Used LRPZPlus rule (Alpha=1, Beta=0)
Y | 5
- - :
L 3% | i i
Daytime cloud phase RGB e ———] [ ——
(R,G,B) = (CH13, CH02, CHo5) O 0.5 1 1.5 2 0 0.5 1 0 0.5 1 0 1 2 3

ABI CHO2 relevance [x 1074] ABI CHO5 relevance [x 1073] ABI CH13 relevance [x 1073] ABI CH15 relevance [x 1073]
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https://github.com/albermax/innvestigate

— 10% w 25% = 50% = /5%
64
GLM flash-extent density [fl (5 min)~1]

Probability of lightning in 60 min
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s 2. — 10%  we= 25% @ weem 50% == 75%
16 32 48 64
GLM flash-extent density [fl (5 min)~1]

Probability of lightning in 60 min
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GOES-16 Mesoscale-1 2023-04-19 21:16 UTC

— 10% == 25%  wwm 50% w=—m 75%

64

GLM flash-extent density [fl (5 min)~1] Probability of lightning in 60 min



https://docs.google.com/file/d/1CWDvyYyDz_gGxU7gEVNvDV14w3eq0BxE/preview

LightningCast

DSS example from 2022 HWT. Lightning initiation between
outdoor festivals in Rochester and Syracuse, NY.

Probability of Lightning [P(LTG)] in next 60 minutes
Point of interest: 43.16N -77.10W; Initial date: 2022-06-16
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Storm popping up
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Location ~ KATL: THE WILLIAM B HARTSFIELD ATLANTA INTERNATIONAL v
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GOES-East LightningCast and GLM

2023-09-14 12:16:17
B 5 P(LTG) at location (5-min) 84
GOES-16 GLM flash count (S-miles; 5-min) 6
\ 5 == GOES-16 GLM flash count (10-miles; 5-min) 6

Ligntningcast RSOl 60-ain Prebebxluy I Thu 16 142 445
6 G Flash Extent Density (f1 update’ u
Seconus Day Cloud Phase Distinction (RGS): 10,35 jn/e.64 uasl.61 ua Thu 161167 14- Sep-23

[
125 11:30

Probability of lightning in the next hour: PUTO)tiocaton i)
I

10% 25% 5

12:15 12:20 12:25 12:30 12:35
GOES-16 GLM flash count (5-miles; 5-min) == GOES-16 GLM flash count (10-miles; 5-min)



https://docs.google.com/file/d/1o0M8-Dg62-EEMzZPZU2lgGi9grz55Ta-/preview

LightningCast

xt 60 min

300 400 500 600
Number of events




Outline

Overview of ProbSevere

ENSO and convection

ProbSevere v3 models

ProbSevere IntenseStormNet (satellite only)

ProbSevere LightningCast (satellite only)
o Deep-learning notebook introduction

Summary
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GOES-16 CONUS 2022-08-29 17:56 UTC

® ProbSevere v3
o Uses multi-sensor storm tracking
o Fuses radar, satellite, lightning, NWP data
o Guidance used throughout U.S. NWS
® IntenseStormNet
o Stand-alone satellite-only convective
nowcasting tool
o Used within PSv3
o Exploring utility for “convection reanalysis”
e LightningCast
o Satellite-only lightning prediction
o Excels at lightning-initiation forecasts
o GLM serves as the truth/target data

10% 50%
90%

Probability of intense convection

193 205 217 229 241 253 303
ABI 10.35-um brightness temperature [K] 25%
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e When building machine-learning models, there
are a few important steps:

GOES-16 CONUS 2022-08-29 17:56 UTC

1. Identify a problem
2. Choose your predictor data and truth data

a. Knowledge and expertise about the data and problem
are essential here
3. Choose your ML model
a. Based on the problem and data
b. Good rule of thumb is start with a simple model and
increase complexity if needed
4. Collect and process the data . :
a. Generally performed with computer programming i Tk g A ¢ _ M. 72,
b. Fix or exclude bad data v 7 Ak
5. Train your model
a. Several easy-to-use APIs
6. Evaluate your model on new data

7. Visualize your model output to users

10% 50%
90%

bility of intense convection

193 205 217 229 241 253 303
ABI 10.35-um brightness temperature [K] 25%

8. Collect user feedback and make changes if

necessary
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GOES-16 CONUS 2022-08-29 17:56 UTC

® Break

e Notebook for deep-learning for
lightning prediction (20-30
minutes)

o Link will be in the chat

10% 50%
90%

Probability of intense convection

3 205 217 229 241 253 303
ABI 10.35-um brightness temperature [K] 25%

® Break

e Notebook on ProbSevere model
predictor importance (60-75
minutes)

o Link will be in the chat
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